【ZOJ3316】Game(带花树)

题面

Vjudge

翻译:

给定棋盘上\(n\)个旗子

一开始先手可以随便拿,

然后每次都不能取离上次的曼哈顿距离超过\(L\)的旗子

谁不能动谁输。

问后手能否赢?

题解

假的博弈论

对于所有曼哈顿距离小于等于\(L\)的点连边

检查是否存在完美匹配

如果存在完美匹配,每次先手选择一个点,后手只需要选择对应的点即可。

否则一定存在一个无法匹配的点,与它曼哈顿距离小于等于\(L\)的个数一定是偶数个(如果是奇数个就会与它匹配)

那么这个联通块的大小是奇数个,后手必败。(假的证明)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 362
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX*MAX];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dfn[MAX],tim;
int f[MAX],n;
int pre[MAX],vis[MAX],match[MAX];
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int lca(int u,int v)
{
++tim;u=getf(u),v=getf(v);
while(dfn[u]!=tim)
{
dfn[u]=tim;
u=getf(pre[match[u]]);
if(v)swap(u,v);
}
return u;
}
queue<int> Q;
void blossom(int x,int y,int w)
{
while(getf(x)!=w)
{
pre[x]=y;y=match[x];
if(vis[y]==2)vis[y]=1,Q.push(y);
if(f[x]==x)f[x]=w;
if(f[y]==y)f[y]=w;
x=pre[y];
}
}
bool Aug(int S)
{
for(int i=1;i<=n;++i)f[i]=i,vis[i]=pre[i]=0;
while(!Q.empty())Q.pop();Q.push(S);vis[S]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(getf(u)==getf(v)||vis[v]==2)continue;
if(!vis[v])
{
vis[v]=2;pre[v]=u;
if(!match[v])
{
for(int x=v,lst;x;x=lst)
lst=match[pre[x]],match[x]=pre[x],match[pre[x]]=x;
return true;
}
vis[match[v]]=1;Q.push(match[v]);
}
else
{
int w=lca(u,v);
blossom(u,v,w);blossom(v,u,w);
}
}
}
return false;
}
void init()
{
memset(h,0,sizeof(h));cnt=1;
memset(match,0,sizeof(match));
}
int X[MAX],Y[MAX],L;
int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
for(int i=1;i<=n;++i)X[i]=read(),Y[i]=read();
L=read();int ans=0;
if(n&1){puts("NO");continue;}
for(int i=1;i<=n;++i)
for(int j=i+1;j<=n;++j)
if(abs(X[i]-X[j])+abs(Y[i]-Y[j])<=L)
Add(i,j),Add(j,i);
for(int i=1;i<=n;++i)if(!match[i])ans+=Aug(i);
(ans==n/2)?puts("YES"):puts("NO");
}
return 0;
}

【ZOJ3316】Game(带花树)的更多相关文章

  1. [转]带花树,Edmonds's matching algorithm,一般图最大匹配

    看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不 ...

  2. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  3. 【Learning】带花树——一般图最大匹配

    一般图最大匹配--带花树 问题 ​ 给定一个图,求该图的最大匹配.即找到最多的边,使得每个点至多属于一条边. ​ 这个问题的退化版本就是二分图最大匹配. ​ 由于二分图中不存在奇环,偶环对最大匹配并无 ...

  4. 【learning】一般图最大匹配——带花树

    问题描述 ​ 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...

  5. [BZOJ]4405: [wc2016]挑战NPC(带花树)

    带花树模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...

  6. 【XSY2774】学习 带花树

    题目描述 给你一个图,求最大匹配. 边的描述方式很特殊,就是一次告诉你\(c_i\)个点:\(d_1,d_2,\ldots,d_{c_i}\),表示这些点两两之间都有连边,也就是说,这是一个团.总共有 ...

  7. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  8. URAL 1099 Work Scheduling (一般图最大匹配) 模板题【带花树】

    <题目链接> <转载于 >>>  > 题目大意: 给出n个士兵,再给出多组士兵之间两两可以匹配的关系.已知某个士兵最多只能与一个士兵匹配.求最多能够有多少对匹 ...

  9. BZOJ 4405 [wc2016]挑战NPC 带花树 一般图最大匹配

    https://www.lydsy.com/JudgeOnline/problem.php?id=4405 这道题大概就是考场上想不出来,想出来也调不出来的题. 把每个桶拆成三个互相有边的点,每个球向 ...

随机推荐

  1. WPF DrawingContext Pen

    <Window x:Class="WPFDrawing.MainWindow" xmlns="http://schemas.microsoft.com/winfx/ ...

  2. 类的扩展之 DataReader的扩展

    看了关于DataReader的扩展,发现能节省很多代码.从数据库读取数据最原始方法就是while()然后做循环,如果数据库添加一个字段那么你所有读取数据库的方法全部添加.通过扩展这个类就摆脱了这种令人 ...

  3. python-模块详解

    模块: 模块的分类: 第三方模块/扩展模块:没在安装python解释器的时候安装的那些功能 自定义模块:你写的功能如果是一个通用的功能,那你就把它当做一个模块 内置模块:安装python解释器的时候跟 ...

  4. NO.05--谈一谈Angular 和 Vue.js 的对比。

    几天的vue之后,给需要的盆友们带来一篇对比,也算是我近期之内业余时间的大工程,现在开始: Vue.js 是开源的 JavaScript 框架,能够帮助开发者构建出美观的 Web 界面.当和其它网络工 ...

  5. nginx main函数

    源代码: int ngx_cdecl main(int argc, char *const *argv) { ngx_int_t i; ngx_log_t *log; ngx_cycle_t *cyc ...

  6. Linux内核学习笔记(1)-- 进程管理概述

    一.进程与线程 进程是处于执行期的程序,但是并不仅仅局限于一段可执行程序代码.通常,进程还要包含其他资源,像打开的文件,挂起的信号,内核内部数据,处理器状态,一个或多个具有内存映射的内存地址空间及一个 ...

  7. 阿里巴巴将在美国推出电子商务网站11 Main

    新浪科技讯 北京时间2月11日晚间消息,阿里巴巴集团周二向路透社证实,阿里巴巴将通过旗下子公司Vendio和Auctiva在美国推出一个电子商务网站. 该网站的名称为“11 Main”(11main. ...

  8. excel导出功能原型

    本篇博客是记录自己实现的excel导出功能原型,下面我将简单介绍本原型: 这是我自制的窗体,有一个ListView和一个Button(导出)控件. 这是我在网上找到了使用exel需要引用的库. usi ...

  9. NumPy常用函数总结

    转载:https://www.cnblogs.com/hd-chenwei/p/6832732.html NumPy库总包含两种基本的数据类型:矩阵和数组,矩阵的使用类似Matlab,本实例用得多的是 ...

  10. 类的static成员变量和成员函数能被继承吗

    1.   父类的static变量和函数在派生类中依然可用,但是受访问性控制(比如,父类的private域中的就不可访问),而且对static变量来说,派生类和父类中的static变量是共用空间的,这点 ...