对每个矩阵里的元素用两个大素数做双关键字哈希,丢进set即可。

#include<cstdio>
#include<iostream>
#include<set>
using namespace std;
#define MOD1 1000000007ll
#define MOD2 1000000009ll
typedef long long ll;
ll m,n,a,b;
ll Quick_Pow(ll a,ll p,ll MOD){
if(!p){
return 1ll;
}
ll res=Quick_Pow(a,p>>1,MOD);
res=res*res%MOD;
if(p&1ll){
res=(a%MOD*res)%MOD;
}
return res;
}
set<pair<ll,ll> >S;
int main(){
cin>>m>>n>>a>>b;
for(ll i=1ll;i<=m;++i){
for(ll j=1ll;j<=n;++j){
ll x1=Quick_Pow(a+j-1ll,b+i-1ll,MOD1);
ll x2=Quick_Pow(a+j-1ll,b+i-1ll,MOD2);
S.insert(make_pair(x1,x2));
}
}
printf("%d\n",S.size());
return 0;
}

【哈希】CDOJ1717 京电的神秘矩阵的更多相关文章

  1. 【数论】【欧拉函数】CDOJ1724 为了我们心爱的京电

    京州电子科技大学遭遇废校危机,为了保护我们心爱的学校,N位魔法少女站了出来,她们能做的就是……成为偶像! 每个魔法少女都拥有一定的人气,他们中的每个人的人气计算方式如下: 假设某个魔法少女的学号为a, ...

  2. AcWing - 156 矩阵(二维哈希)

    题目链接:矩阵 题意:给定一个$m$行$n$列的$01$矩阵$($只包含数字$0$或$1$的矩阵$)$,再执行$q$次询问,每次询问给出一个$a$行$b$列的$01$矩阵,求该矩阵是否在原矩阵中出现过 ...

  3. 机器学习(十三)——机器学习中的矩阵方法(3)病态矩阵、协同过滤的ALS算法(1)

    http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−− ...

  4. 3D数学读书笔记——矩阵进阶

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25242725 最终要学习矩阵 ...

  5. [日常] NOIP前集训日记

    写点流水账放松身心... 10.8 前一天考完NHEEE的一调考试终于可以开始集训了Orz (然后上来考试就迟到5min, GG) T1维护队列瞎贪心, 过了大样例交上去一点也不稳...T出翔只拿了5 ...

  6. 省常中模拟 Test3 Day1

    tile 贪心 题意:给出一个矩形,用不同字母代表的正方形填充,要求相邻的方块字母不能相同,求字典序(将所有行拼接起来)最小的方案. 初步解法:一开始没怎么想,以为策略是每次填充一个尽量大的正方形.但 ...

  7. [USACO 07NOV]Cow Relays

    Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a rel ...

  8. Supervised Hashing with Kernels, KSH

    Notation 该论文中应用到较多符号,为避免混淆,在此进行解释: n:原始数据集的大小 l:实验中用于监督学习的数据集大小(矩阵S行/列的大小) m:辅助数据集,用于得到基于核的哈希函数 r:比特 ...

  9. cuda并行编程之求解ConjugateGradient(共轭梯度迭代)丢失dll解决方式

    在进行图像处理过程中,我们常常会用到梯度迭代求解大型线性方程组.今天在用cuda对神秘矩阵进行求解的时候.出现了缺少dll的情况: 报错例如以下图: watermark/2/text/aHR0cDov ...

随机推荐

  1. css优先级机制

    所谓CSS优先级,即是指CSS样式在浏览器中被解析的先后顺序.   1.important >(内联样式)Inline style  >(内部样式)Internal style sheet ...

  2. rabbitmq之核心构架和原理总结(四)

    前言 前面博文已经将安装配置和站点管理介绍了,现在开始正式学习rabbitmq的使用了: rabbitMQ的构架 rabbitmq作为消息队列,一条消息从发布到订阅消费的完整流程为: 消息 --> ...

  3. 浅谈C语言中的强符号、弱符号、强引用和弱引用【转】

    转自:http://www.jb51.net/article/56924.htm 首先我表示很悲剧,在看<程序员的自我修养--链接.装载与库>之前我竟不知道C有强符号.弱符号.强引用和弱引 ...

  4. 安全测试===appscan扫描工具介绍

    IBM AppScan该产品是一个领先的 Web 应用安全测试工具,曾以 Watchfire AppScan 的名称享誉业界.Rational AppScan 可自动化 Web 应用的安全漏洞评估工作 ...

  5. 图论-最小生成树-Kruskal算法

    有关概念: 最小生成树:在连通图G中,连接图G所有顶点且总权最小的边构成的树 思路: 首先对边按权从小到大排序,紧接着枚举每一条边,如果两个结点的祖先结点不同(并查集),则连上此边,直到边数等于结点数 ...

  6. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 动态树

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 题意:加边,删边,查询到根的距离. #include <bits/stdc++ ...

  7. 修改centos地址连接为自动连接

    1.进入目录/etc/sysconfig/network-scripts/ 2.修改ifcfg-etn0 文件   (即你的网卡标识命名的配置文件) 3.将ONBOOT=no改成yes 4.保存后重启 ...

  8. 51Nod 1022 石子归并 V2(区间DP+四边形优化)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成 ...

  9. kafka 设置消费者线程数

    http://blog.csdn.net/derekjiang/article/details/9053863 分布式发布订阅消息系统 Kafka 架构设计 - 目前见到的最好的Kafka中文文章 M ...

  10. Developer Express控件gridcontrol中gridView的某一个单元格是否可以自由输入

    场景:在Developer Express控件gridcontrol中的gridView中,当医生开的临时医嘱的医嘱类型为"中草药","计价总量"单元格不可以自 ...