题目描述

刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的。账本上记录了n个月以来的收入情况,其中第i 个月的收入额为Ai(i=1,2,3...n-1,n), 。当 Ai大于0时表示这个月盈利Ai 元,当 Ai小于0时表示这个月亏损Ai 元。所谓一段时间内的总收入,就是这段时间内每个月的收入额的总和。 刁姹的任务是秘密进行的,为了调查商人的账本,她只好跑到商人那里打工。她趁商人不在时去偷看账本,可是她无法将账本偷出来,每次偷看账本时她都只能看某段时间内账本上记录的收入情况,并且她只能记住这段时间内的总收入。 现在,刁姹总共偷看了m次账本,当然也就记住了m段时间内的总收入,你的任务是根据记住的这些信息来判断账本是不是假的。

输入

第一行为一个正整数w,其中w < 100,表示有w组数据,即w个账本,需要你判断。每组数据的第一行为两个正整数n和m,其中n < 100,m < 1000,分别表示对应的账本记录了多少个月的收入情况以及偷看了多少次账本。接下来的m行表示刁姹偷看m次账本后记住的m条信息,每条信息占一行,有三个整数s,t和v,表示从第s个月到第t个月(包含第t个月)的总收入为v,这里假设s总是小于等于t。

输出

包含w行,每行是true或false,其中第i行为true当且仅当第i组数据,即第i个账本不是假的;第i行为false当且仅当第i组数据,即第i个账本是假的。

样例输入

2
3 3
1 2 10
1 3 -5
3 3 -15
5 3
1 5 100
3 5 50
1 2 51

样例输出

true
false


题解

带权并查集

注意题目中所给的是闭区间,在处理时应变成半开半闭的,将左端点-1或将右端点+1,赋初值时也要注意范围,以便区间合并的处理。

r[x]表示x到f[x]的半开半闭区间中盈利或亏损的数额。

#include <cstdio>
int f[102] , r[102];
int find(int x)
{
if(x == f[x])
return x;
int t = find(f[x]);
r[x] += r[f[x]];
f[x] = t;
return t;
}
int main()
{
int w;
scanf("%d" , &w);
while(w -- )
{
int n , m , i , x , y , z , tx , ty , flag = 1;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n + 1 ; i ++ )
f[i] = i , r[i] = 0;
while(m -- )
{
scanf("%d%d%d" , &x , &y , &z);
y ++ ;
tx = find(x) , ty = find(y);
if(tx != ty)
{
f[tx] = ty;
r[tx] = z + r[y] - r[x];
}
else if(r[x] - r[y] != z)
flag = 0;
}
printf("%s\n" , flag ? "true" : "false");
}
return 0;
}

【bzoj1202】[HNOI2005]狡猾的商人 带权并查集的更多相关文章

  1. BZOJ1202: [HNOI2005]狡猾的商人(带权并查集)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4577  Solved: 2249[Submit][Status][Discuss] Descript ...

  2. BZOJ 1202: [HNOI2005]狡猾的商人 [带权并查集]

    题意: 给出m个区间和,询问是否有区间和和之前给出的矛盾 NOIp之前做过hdu3038..... 带权并查集维护到根的权值和,向左合并 #include <iostream> #incl ...

  3. luogu 2294 狡猾的商人 带权并查集

    此题做法多啊 带权并查集,区间dp,前缀和,差分约束 1.自己写的前缀和, 11 #include<bits/stdc++.h> #define rep(i,x,y) for(regist ...

  4. BZOJ 1202 狡猾的商人(带权并查集)

    给出了l,r,w.我们就得知了s[r]-s[l-1]=w.也就是说,点l-1和点r的距离为w. 于是可以使用带权并查集,定义dis[i]表示点i到根节点的距离.查询和合并的时候维护一下就OK了. 如果 ...

  5. Bzoj1202/洛谷P2294 [HNOI2005]狡猾的商人(带权并查集/差分约束系统)

    题面 Bzoj 洛谷 题解 考虑带权并查集,设\(f[i]\)表示\(i\)的父亲(\(\forall f[i]<i\)),\(sum[i]\)表示\(\sum\limits_{j=fa[i]} ...

  6. 【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)

    题意:一个账本记录了N个月以来的收入情况,现在有一个侦探员不同时间偷看到M段时间内的总收入,问这个账本是否为假账. 解法:带权并查集+前缀和.   判断账本真假是通过之前可算到的答案与当前读入的值是否 ...

  7. [BZOJ1202][HNOI2005]狡猾的商人

    [BZOJ1202][HNOI2005]狡猾的商人 试题描述 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的.账本上记录了n个月以来的收入情况,其中第i 个月的收入额为Ai(i= ...

  8. bzoj1202: [HNOI2005]狡猾的商人(并查集 差分约束)

    1202: [HNOI2005]狡猾的商人 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4127  Solved: 1981[Submit][Sta ...

  9. bzoj1202: [HNOI2005]狡猾的商人(差分约束)

    1202: [HNOI2005]狡猾的商人 题目:传送门 题解: 据说是带权并查集!蒟蒻不会啊!!! 可是听说lxj大佬用差分约束A了,于是开始一通乱搞. 设s[i]为前i个月的总收益,那么很容易就可 ...

随机推荐

  1. jxls-2.x导出excel入门——基本操作

    之前随笔使用的是1.x的比较古老的版本了,已经不再维护,接下来使用较新的2.x的版本进行导出 之前一直按照其他的博客与官网的随笔进行导出,发现一直报错,后面更换了POI的版本为3.16(因为jxls也 ...

  2. Linux下安装Nginx并实现socket代理

    nginx可以使用各平台的默认包来安装,本文是介绍使用源码编译安装,包括具体的编译参数信息. 正式开始前,编译环境gcc g++ 开发库之类的需要提前装好,这里默认你已经装好. ububtu平台编译环 ...

  3. 后续博客转移到zhylj.cc

    此博客暂不更新了 zhylj.cc

  4. 原生js实现轮播图原理

    轮播图的原理1.图片移动实现原理:利用浮动将所有所有照片依次排成一行,给这一长串图片添加一个父级的遮罩,每次只显示一张图,其余的都隐藏起来.对图片添加绝对定位,通过控制left属性,实现照片的移动. ...

  5. Python3 小工具-ARP扫描

    from scapy.all import * import optparse import threading import os def scan(ipt): pkt=Ether(dst='ff: ...

  6. Windows下PATH等环境变量详解(转载)

    本文转载自http://legend2011.blog.51cto.com/3018495/553255 在学习JAVA的过程中,涉及到多个环境变量(environment variable)的概念, ...

  7. [leetcode-670-Maximum Swap]

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...

  8. var,let,const,三种申明变量的整理

    javascript,正在慢慢变成一个工业级语言,势力慢慢渗透ios,安卓,后台 首先let,是局部变量,块级作用域:var全局的,const是常量,也就是只读的: 一行demo说明 for (var ...

  9. Thunder团队第三周 - Scrum会议1

    Scrum会议1 小组名称:Thunder 项目名称:i阅app Scrum Master:王航 工作照片: 杨梓瑞在拍照,所以不在照片中. 参会成员: 王航(Master):http://www.c ...

  10. 学霸系统PipeLine功能规格说明书

    学霸系统PipeLine功能规格说明书共分为以下三部分: 1.产品面向用户群体 2.用户使用说明 3.产品功能具体实现 1.产品面向用户群体 我们这组的项目并不是传统意义上能发布并进行展示的项目,因此 ...