To the Max

  • Time Limit: 2000/1000 MS (Java/Others)
  • Memory Limit: 65536/32768 K (Java/Others)

Problem Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

is in the lower left corner:

9 2

-4 1

-1 8

and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4

0 -2 -7 0 9 2 -6 2

-4 1 -4 1 -1

8 0 -2

Sample Output

15

题目大意

给定一个N*N的二位数组Matrix,求该二维数组的最大子矩阵和。

题目分析

  • 暴力枚举

用4个循环,枚举出所有的子矩阵,再给每个子矩阵求和,找出最大的,肯定会超时,不可用。

时间复杂度:O(N^6)

  • 动态规划 (标准解法)

把二维转化为一维再求解。

有子矩阵:矩阵中第i行至第j行的矩阵。

用数组ColumnSum[k]记录子矩阵中第k列的和。

最后对ColumnSum算出最大子段和进行求解。

时间复杂度:O(N^3)

关于最大子段和:

有一序列a=a1 a2 ... an,求出该序列中最大的连续子序列。

比如序列1 -2 3 4 -5的最大子序列为3 4,和为3+4=7。

动态转移方程:DP[i]=max(DP[i-1]+a[i], a[i])

时间复杂度:O(N)

(最大子段和的具体过程网上有,我就不多说了)

代码

  1. #include <cstdlib>
  2. #include <cstdio>
  3. using namespace std;
  4. #define inf 0x7f7f7f7f
  5. #define max(a, b) (((a)>(b))?(a):(b))
  6. int N;
  7. int Matrix[110][110];
  8. int Answer = -inf;
  9. int main()
  10. {
  11. scanf("%d", &N);
  12. for(int i = 1; i <= N; ++ i)
  13. for(int j = 1; j <= N; ++ j)
  14. scanf("%d", &Matrix[i][j]);
  15. for(int i = 1; i <= N; ++ i)
  16. {
  17. int ColumnSum[110] = {0};
  18. for(int j = i; j <= N; ++ j)
  19. {
  20. int DP[110] = {0};
  21. for(int k = 1; k <= N; ++ k)
  22. {
  23. ColumnSum[k] += Matrix[j][k];
  24. // 求最大子段和
  25. DP[k] = max(DP[k-1] + ColumnSum[k], ColumnSum[k]);
  26. Answer = max(DP[k], Answer);
  27. }
  28. }
  29. }
  30. printf("%d\n", Answer);
  31. return 0;
  32. }

【HDOJ-1081】To The Max(动态规划)的更多相关文章

  1. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  2. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  3. HDOJ 1081(ZOJ 1074) To The Max(动态规划)

    Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...

  4. HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  5. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  6. Hdoj 1176 免费馅饼 【动态规划】

    免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  7. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  8. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

  9. Hdu 1081 To The Max

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  10. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

随机推荐

  1. 杨氏矩阵C++实现

    何为杨氏矩阵?这个网上的介绍很多,下面给出杨氏矩阵搜索算法: #include <iostream> using namespace std; // 杨氏矩阵查找算法 ], int N, ...

  2. DOS下常用命令

    0,想进入某个驱动器,直接输入盘符即可.如:“d:”1,CD--进入指定目录 2,cls--清除显示器屏幕上的内容,使DOS提示符到屏幕左上角. 3,time--显示和设置DOS的系统时间 4,dir ...

  3. January 23 2017 Week 4 Monday

    Knowledge is long, life is short. 吾生也有涯,而知也无涯. I often feel that I have a lot of things to learn, ne ...

  4. 关于项目中的DAL数据接入层架构设计

    摘要:项目中对关系型数据库的接入再寻常不过,也有海量的ORM工具可供选择,一个一般性的DAL数据接入层的结构却大同小异,这里就分享一下使用Hibernate.Spring.Hessian这三大工具对D ...

  5. Ajax向Controller发送请求并接受数据需要注意的一个细节

    想用Ajax想向Controller发送请求和接收返回的字符等等.Controller中要使用@ResponseBody注解. <script type="text/javascrip ...

  6. Django 导出csv文件 中文乱码问题

    import csvimport codecsimport datetimefrom django.db import connectionfrom django.contrib.auth.model ...

  7. checkbox的readonly属性设置

    方式一: checkbox没有readOnly属性,如果使用disabled=“disabled”属性的话,会让checkbox变成灰色的,用户很反感这种样式可以这样让它保持只读: 设置它的oncli ...

  8. Codeforces Round #528 (Div. 2, based on Technocup 2019 Elimination Round 4) C. Connect Three 【模拟】

    传送门:http://codeforces.com/contest/1087/problem/C C. Connect Three time limit per test 1 second memor ...

  9. [转]HTTP报文接口及客户端和服务器端交互原理

    1. 协议 a. TCP/IP整体构架概述 TCP/IP协议并不完全符合OSI的七层参考模型.传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务.该模型的目的 ...

  10. Java实现 lower_bound() 和 upper_bound()

    Java实现 lower_bound() 和 upper_bound() lower_bound() 函数 lower_bound() 在 [begin, end) 进行二分查找,返回 大于或等于 t ...