【HDOJ-1081】To The Max(动态规划)
To the Max
- Time Limit: 2000/1000 MS (Java/Others)
- Memory Limit: 65536/32768 K (Java/Others)
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
题目大意
给定一个N*N的二位数组Matrix,求该二维数组的最大子矩阵和。
题目分析
- 暴力枚举
用4个循环,枚举出所有的子矩阵,再给每个子矩阵求和,找出最大的,肯定会超时,不可用。
时间复杂度:O(N^6)
- 动态规划 (标准解法)
把二维转化为一维再求解。
有子矩阵:矩阵中第i行至第j行的矩阵。
用数组ColumnSum[k]记录子矩阵中第k列的和。
最后对ColumnSum算出最大子段和进行求解。
时间复杂度:O(N^3)
关于最大子段和:
有一序列a=a1 a2 ... an
,求出该序列中最大的连续子序列。
比如序列1 -2 3 4 -5
的最大子序列为3 4
,和为3+4=7。
动态转移方程:DP[i]=max(DP[i-1]+a[i], a[i])
时间复杂度:O(N)
(最大子段和的具体过程网上有,我就不多说了)
代码
#include <cstdlib>
#include <cstdio>
using namespace std;
#define inf 0x7f7f7f7f
#define max(a, b) (((a)>(b))?(a):(b))
int N;
int Matrix[110][110];
int Answer = -inf;
int main()
{
scanf("%d", &N);
for(int i = 1; i <= N; ++ i)
for(int j = 1; j <= N; ++ j)
scanf("%d", &Matrix[i][j]);
for(int i = 1; i <= N; ++ i)
{
int ColumnSum[110] = {0};
for(int j = i; j <= N; ++ j)
{
int DP[110] = {0};
for(int k = 1; k <= N; ++ k)
{
ColumnSum[k] += Matrix[j][k];
// 求最大子段和
DP[k] = max(DP[k-1] + ColumnSum[k], ColumnSum[k]);
Answer = max(DP[k], Answer);
}
}
}
printf("%d\n", Answer);
return 0;
}
【HDOJ-1081】To The Max(动态规划)的更多相关文章
- HDU 1081 To The Max(动态规划)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- hdu 1081 To The Max(dp+化二维为一维)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...
- HDOJ 1081(ZOJ 1074) To The Max(动态规划)
Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...
- HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
- POJ 1050 To the Max -- 动态规划
题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...
- Hdoj 1176 免费馅饼 【动态规划】
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- dp - 最大子矩阵和 - HDU 1081 To The Max
To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...
- HDU 1081 To The Max【dp,思维】
HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...
- Hdu 1081 To The Max
To The Max Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
随机推荐
- Error: A JNI error has occurred, please check your installation and try again
自己写的maven项目打包以后的一个email测试类jar,放到linux上运行时报错: Error: A JNI error has occurred, please check your inst ...
- Maven学习总结(一)——pom.xml文件配置详解
<build>标签:<plugins>给出构建过程中所用到的插件 <plugins> <plugin> <groupId>org.apach ...
- July 11th 2017 Week 28th Tuesday
No possession, but use, in the only riches. 真正的财富不是占有,而是使用. These days I have bought tens of books a ...
- 应用监控Metrics
应用监控Metrics 一.Metrics简介 应用监控系统Metrics由Metrics.NET+InfluxDB+Grafana组合而成,通过客户端Metrics.NET在业务代码中 ...
- Android进阶笔记17:Android手机屏幕坐标系
1. 手机屏幕坐标系: 整个坐标系是以手机屏幕左上角为原点(0,0),如下:
- 阅读MySQL文档第21章摘抄
触发程序是与表相关的数据库对象. mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2)); Query OK, 0 ro ...
- interaction-oriented architecture - MVC
MVC(Model-View-Controller),它是专门针 对交互系统提出的,所以如果我们要构建一个交互系统,那么我们就可以直接应用MVC模式,然后 在该模式所搭建的场景的启发下去发现Model ...
- @SuppressWarnings注解用法详解
@SuppressWarnings注解用法详解 今天来谈谈@SuppressWarnings注解的作用. J2SE 提供的最后一个批注是 @SuppressWarnings.该批注的作用是给编译器一条 ...
- 搭建nlp_server服务器
这是文档 如何启动斯坦福NLP-Service 1.sudo apt-get install gearman-job-server安装gearman-server 2.启动gearman服务: gea ...
- 面试准备——(二)专业知识(4)C/C++语言
1. 预处理 断言 assert的功能,assert(statement),如果statement为真则程序继续执行,为假则整个程序中断退出 3. #define [ #ifndef DISKSIM_ ...