原文地址:https://github.com/razerdp/AndroidSourceAnalysis/blob/master/LinearLayout/android_widget_LinearLayout.md

1.谈谈LinearLayout Android的常用布局里,LinearLayout属于使用频率很高的布局。RelativeLayout也是,但相比于RelativeLayout每个子控件都需要给上ID以供另一个相关控件摆放位置来说,LinearLayout两个方向上的排列规则在明显垂直/水平排列情况下使用更加方便。

同时,出于性能上来说,一般而言功能越复杂的布局,性能也是越低的(不考虑嵌套的情况下)。

相比于RelativeLayout无论如何都是两次测量的情况下,LinearLayout只有子控件设置了weight属性时,才会有二次测量,其余情况都是一次。

另外,LinearLayout的高级用法除了weight,还有divider,baselineAligned等用法,虽然用的不常见就是了。

以下是LinearLayout相比于其他布局所拥有的特性:

属性 值类型 描述 备注
orientation int 作为LinearLayout必须使用的属性之一,支持纵向排布或者水平排布子控件  
weightSum float 指定权重总和 缺省值为1.0
baselineAligned boolean 基线对齐  
baselineAlignedChildIndex int 该LinearLayout下的view以某个继承TextView的View的基线对齐  
measureWithLargestChild boolean 当值为true,所有带权重属性的View都会使用最大View的最小尺寸  
divider(需要配合showDividers使用) drawable in java/reference in xml 如同您常在ListView使用一样,为LinearLayout添加分割线 [api>11] 同时如果是自己建立的drawable,请指定size

【注意】divider附加属性为showDividers(middle|end|beginning|none):

  • middle 在每两项之间添加分割线
  • end 在整体的最后一项添加分割线
  • beginning 在整体的首项添加分割线
  • none 无

本篇主要针对LinearLayout垂直方向的测量、weight和divider进行分析,其余属性因为比较冷门,因此不会详说


###2.使用方法 对于LinearLayout的使用,相信您闭着眼睛都能写出来,因此这里就略过了。


###3.源码分析

源码分析阶段主要针对这几个地方:

  • measure流程
  • weight的计算

后两者的主要工作其实都是被包含在measure里面的,因此对于LinearLayout来说,最重要的,依然是measure. ####3.1 measure

在LinearLayout的onMeasure()里面,所有的测量都根据mOrientation这个int值来进行水平或者垂直的测量计算。

我们都知道,java中int在初始化不分配值的时候,都是默认的0,因此如果我们不指定orientation,measure则会按照水平方向来测量【水平orientation=0/垂直orientation=1】

接下来我们主要看看measureVertical方法,了解了垂直方向的测量之后,水平方向的也就不难理解了,为了篇幅,我们主要分析垂直方向的测量。

measureVertical方法除去注释,大概200多行,因此我们分段分析。

方法主要分为三大块:

  • 一大堆变量
  • 一个主要的for循环来不断测量子控件
  • 其余参数影响以及根据是否有weight再次测量

#####3.1.1 一大堆变量

为何这里要说说变量,因为这些变量都会极大的影响到后面的测量,同时也是十分容易混淆的,所以这里需要贴一下。

void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {

        // mTotalLength作为LinearLayout成员变量,其主要目的是在测量的时候通过累加得到所有子控件的高度和(Vertical)或者宽度和(Horizontal)
mTotalLength = 0;
// maxWidth用来记录所有子控件中控件宽度最大的值。
int maxWidth = 0;
// 子控件的测量状态,会在遍历子控件测量的时候通过combineMeasuredStates来合并上一个子控件测量状态与当前遍历到的子控件的测量状态,采取的是按位相或
int childState = 0; /**
* 以下两个最大宽度跟上面的maxWidth最大的区别在于matchWidthLocally这个参数
* 当matchWidthLocally为真,那么以下两个变量只会跟当前子控件的左右margin和相比较取大值
* 否则,则跟maxWidth的计算方法一样
*/
// 子控件中layout_weight<=0的View的最大宽度
int alternativeMaxWidth = 0;
// 子控件中layout_weight>0的View的最大宽度
int weightedMaxWidth = 0;
// 是否子控件全是match_parent的标志位,用于判断是否需要重新测量
boolean allFillParent = true;
// 所有子控件的weight之和
float totalWeight = 0; // 如您所见,得到所有子控件的数量,准确的说,它得到的是所有同级子控件的数量
// 在官方的注释中也有着对应的例子
// 比如TableRow,假如TableRow里面有N个控件,而LinearLayout(TableLayout也是继承LinearLayout哦)下有M个TableRow,那么这里返回的是M,而非M*N
// 但实际上,官方似乎也只是直接返回getChildCount(),起这个方法名的原因估计是为了让人更加的明白,毕竟如果是getChildCount()可能会让人误认为为什么没有返回所有(包括不同级)的子控件数量
final int count = getVirtualChildCount(); // 得到测量模式
final int widthMode = MeasureSpec.getMode(widthMeasureSpec);
final int heightMode = MeasureSpec.getMode(heightMeasureSpec); // 当子控件为match_parent的时候,该值为ture,同时判定的还有上面所说的matchWidthLocally,这个变量决定了子控件的测量是父控件干预还是填充父控件(剩余的空白位置)。
boolean matchWidth = false; boolean skippedMeasure = false; final int baselineChildIndex = mBaselineAlignedChildIndex;
final boolean useLargestChild = mUseLargestChild; int largestChildHeight = Integer.MIN_VALUE;
}

这里有很多变量和值,事实上,直到现在,我依然没有完全弄明白这些值的意义。

在这一大堆变量里面,我们主要留意的是三个方面:

  • mTotalLength:这个就是最终得到的整个LinearLayout的高度(子控件高度累加及自身padding)
  • 三个跟width相关的变量
  • weight相关的变量

#####3.1.2 测量

通过for循环不断的得到子控件然后根据自己的定义进行赋值,这就是LinearLayout测量里面最重要的一步。

这里的代码比较长,去掉注释后有100行左右,因此这里采取重要地方注释结合文字描述来分析。

void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
// ...接上面的一大堆变量
for (int i = 0; i < count; ++i) { final View child = getVirtualChildAt(i); if (child == null) {
// 目前而言,measureNullChild()方法返回的永远是0,估计是设计者留下来以后或许有补充的。
mTotalLength += measureNullChild(i);
continue;
} if (child.getVisibility() == GONE) {
// 同上,返回的都是0。
// 事实上这里的意思应该是当前遍历到的View为Gone的时候,就跳过这个View,下一句的continue关键字也正是这个意思。
// 忽略当前的View,这也就是为什么Gone的控件不占用布局资源的原因。(毕竟根本没有分配空间)
i += getChildrenSkipCount(child, i);
continue;
} // 根据showDivider的值(before/middle/end)来决定遍历到当前子控件时,高度是否需要加上divider的高度
// 比如showDivider为before,那么只会在第0个子控件测量时加上divider高度,其余情况下都不加
if (hasDividerBeforeChildAt(i)) {
mTotalLength += mDividerWidth;
} final LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams)
child.getLayoutParams();
// 得到每个子控件的LayoutParams后,累加权重和,后面用于跟weightSum相比较
totalWeight += lp.weight; // 我们都知道,测量模式有三种:
// * UNSPECIFIED:父控件对子控件无约束
// * Exactly:父控件对子控件强约束,子控件永远在父控件边界内,越界则裁剪。如果要记忆的话,可以记忆为有对应的具体数值或者是Match_parent
// * AT_Most:子控件为wrap_content的时候,测量值为AT_MOST。 // 下面的if/else分支都是跟weight相关
if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) {
// 这个if里面需要满足三个条件:
// * LinearLayout的高度为match_parent(或者有具体值)
// * 子控件的高度为0
// * 子控件的weight>0
// 这其实就是我们通常情况下用weight时的写法
// 测量到这里的时候,会给个标志位,稍后再处理。此时会计算总高度
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
skippedMeasure = true;
} else {
// 到这个分支,则需要对不同的情况进行测量
int oldHeight = Integer.MIN_VALUE; if (lp.height == 0 && lp.weight > 0) {
// 满足这两个条件,意味着父类即LinearLayout是wrap_content,或者mode为UNSPECIFIED
// 那么此时将当前子控件的高度置为wrap_content
// 为何需要这么做,主要是因为当父类为wrap_content时,其大小实际上由子控件控制
// 我们都知道,自定义控件的时候,通常我们会指定测量模式为wrap_content时的默认大小
// 这里强制给定为wrap_content为的就是防止子控件高度为0.
oldHeight = 0;
lp.height = LayoutParams.WRAP_CONTENT;
} /**【1】*/
// 下面这句虽然最终调用的是ViewGroup通用的同名方法,但传入的height值是跟平时不一样的
// 这里可以看到,传入的height是跟weight有关,关于这里,稍后的文字描述会着重阐述
measureChildBeforeLayout(
child, i, widthMeasureSpec, 0, heightMeasureSpec,
totalWeight == 0 ? mTotalLength : 0); // 重置子控件高度,然后进行精确赋值
if (oldHeight != Integer.MIN_VALUE) {
lp.height = oldHeight;
} final int childHeight = child.getMeasuredHeight();
final int totalLength = mTotalLength;
// getNextLocationOffset返回的永远是0,因此这里实际上是比较child测量前后的总高度,取大值。
mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin +
lp.bottomMargin + getNextLocationOffset(child)); if (useLargestChild) {
largestChildHeight = Math.max(childHeight, largestChildHeight);
}
} if ((baselineChildIndex >= 0) && (baselineChildIndex == i + 1)) {
mBaselineChildTop = mTotalLength;
} if (i < baselineChildIndex && lp.weight > 0) {
throw new RuntimeException("A child of LinearLayout with index "
+ "less than mBaselineAlignedChildIndex has weight > 0, which "
+ "won't work. Either remove the weight, or don't set "
+ "mBaselineAlignedChildIndex.");
} boolean matchWidthLocally = false; // 还记得我们变量里又说到过matchWidthLocally这个东东吗
// 当父类(LinearLayout)不是match_parent或者精确值的时候,但子控件却是一个match_parent
// 那么matchWidthLocally和matchWidth置为true
// 意味着这个控件将会占据父类(水平方向)的所有空间
if (widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT) {
matchWidth = true;
matchWidthLocally = true;
} final int margin = lp.leftMargin + lp.rightMargin;
final int measuredWidth = child.getMeasuredWidth() + margin;
maxWidth = Math.max(maxWidth, measuredWidth);
childState = combineMeasuredStates(childState, child.getMeasuredState()); allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT; if (lp.weight > 0) {
weightedMaxWidth = Math.max(weightedMaxWidth,
matchWidthLocally ? margin : measuredWidth);
} else {
alternativeMaxWidth = Math.max(alternativeMaxWidth,
matchWidthLocally ? margin : measuredWidth);
} i += getChildrenSkipCount(child, i);
}
}

在代码中我注释了一部分,其中最值得注意的是measureChildBeforeLayout()方法。这个方法将会决定子控件可用的剩余分配空间。

measureChildBeforeLayout()最终调用的实际上是ViewGroup的measureChildWithMargins(),不同的是,在传入高度值的时候(垂直测量情况下),会对weight进行一下判定

假如当前子控件的weight加起来还是为0,则说明在当前子控件之前还没有遇到有weight的子控件,那么LinearLayout将会进行正常的测量,若之前遇到过有weight的子控件,那么LinearLayout传入0。

那么measureChildWithMargins()的最后一个参数,也就是LinearLayout在这里传入的这个高度值是用来干嘛的呢?

如果我们追溯下去,就会发现,这个函数最终其实是为了结合父类的MeasureSpec以及child自身的LayoutParams来对子控件测量。而最后传入的值,在子控件测量的时候被添加进去。

protected void measureChildWithMargins(View child,
int parentWidthMeasureSpec, int widthUsed,
int parentHeightMeasureSpec, int heightUsed) {
final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams(); final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
+ widthUsed, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
+ heightUsed, lp.height); child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}

在官方的注释中,我们可以看到这么一句:

  • @param heightUsed Extra space that has been used up by the parent vertically (possibly by other children of the parent)

事实上,我们在代码中也可以很清晰的看到,在getChildMeasureSpec()中,子控件需要把父控件的padding,自身的margin以及一个可调节的量三者一起测量出自身的大小。

那么假如在测量某个子控件之前,weight一直都是0,那么该控件在测量时,需要考虑在本控件之前的总高度,来根据剩余控件分配自身大小。而如果有weight,那么就不考虑已经被占用的控件,因为有了weight,子控件的高度将会在后面重新赋值。


####3.2 weight #####3.2.1 weight的再次测量

在上面的代码中,LinearLayout做了针对没有weight的工作,在这里主要是确定自身的大小,然后再针对weight进行第二次测量来确定子控件的大小。

我们接着看下面的代码:

void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
//...接上面
// 下面的这一段代码主要是为useLargestChild属性服务的,不在本文主要分析范围,略过
if (mTotalLength > 0 && hasDividerBeforeChildAt(count)) {
mTotalLength += mDividerHeight;
} if (useLargestChild &&
(heightMode == MeasureSpec.AT_MOST || heightMode == MeasureSpec.UNSPECIFIED)) {
mTotalLength = 0; for (int i = 0; i < count; ++i) {
final View child = getVirtualChildAt(i); if (child == null) {
mTotalLength += measureNullChild(i);
continue;
} if (child.getVisibility() == GONE) {
i += getChildrenSkipCount(child, i);
continue;
} final LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams)
child.getLayoutParams();
// Account for negative margins
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + largestChildHeight +
lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
}
} // Add in our padding
mTotalLength += mPaddingTop + mPaddingBottom; int heightSize = mTotalLength; // Check against our minimum height
heightSize = Math.max(heightSize, getSuggestedMinimumHeight()); // Reconcile our calculated size with the heightMeasureSpec
int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0);
heightSize = heightSizeAndState & MEASURED_SIZE_MASK; }

上面这里是为weight情况做的预处理。

我们略过useLargestChild 的情况,主要看看if处理外的代码。在这里,我没有去掉官方的注释,而是保留了下来。

从中我们不难看出heightSize做了两次赋值,为何需要做两次赋值。

因为我们的布局除了子控件,还有自己本身的background,因此这里需要比较当前的子控件的总高度和背景的高度取大值。

接下来就是判定大小,我们都知道测量的MeasureSpec实际上是一个32位的int,高两位是测量模式,剩下的就是大小,因此heightSize = heightSizeAndState & MEASURED_SIZE_MASK;作用就是用来得到大小的精确值(不含测量模式)

接下来我们看这个方法里面第二占比最大的代码:

void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
//...接上面 //算出剩余空间,假如之前是skipp的话,那么几乎可以肯定是有剩余空间(同时有weight)的
int delta = heightSize - mTotalLength;
if (skippedMeasure || delta != 0 && totalWeight > 0.0f) {
// 限定weight总和范围,假如我们给过weighSum范围,那么子控件的weight总和受此影响
float weightSum = mWeightSum > 0.0f ? mWeightSum : totalWeight; mTotalLength = 0; for (int i = 0; i < count; ++i) {
final View child = getVirtualChildAt(i); if (child.getVisibility() == View.GONE) {
continue;
} LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams(); float childExtra = lp.weight;
if (childExtra > 0) {
// 全篇最精华的一个地方。。。。拥有weight的时候计算方式,ps:执行到这里时,child依然还没进行自身的measure // 公式 = 剩余高度*(子控件的weight/weightSum),也就是子控件的weight占比*剩余高度
int share = (int) (childExtra * delta / weightSum);
// weightSum计余
weightSum -= childExtra;
// 剩余高度
delta -= share; final int childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
mPaddingLeft + mPaddingRight +
lp.leftMargin + lp.rightMargin, lp.width); if ((lp.height != 0) || (heightMode != MeasureSpec.EXACTLY)) {
int childHeight = child.getMeasuredHeight() + share;
if (childHeight < 0) {
childHeight = 0;
} child.measure(childWidthMeasureSpec,
MeasureSpec.makeMeasureSpec(childHeight, MeasureSpec.EXACTLY));
} else { child.measure(childWidthMeasureSpec,
MeasureSpec.makeMeasureSpec(share > 0 ? share : 0,
MeasureSpec.EXACTLY));
} childState = combineMeasuredStates(childState, child.getMeasuredState()
& (MEASURED_STATE_MASK>>MEASURED_HEIGHT_STATE_SHIFT));
} final int margin = lp.leftMargin + lp.rightMargin;
final int measuredWidth = child.getMeasuredWidth() + margin;
maxWidth = Math.max(maxWidth, measuredWidth); boolean matchWidthLocally = widthMode != MeasureSpec.EXACTLY &&
lp.width == LayoutParams.MATCH_PARENT; alternativeMaxWidth = Math.max(alternativeMaxWidth,
matchWidthLocally ? margin : measuredWidth); allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT; final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + child.getMeasuredHeight() +
lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
} mTotalLength += mPaddingTop + mPaddingBottom; } // 没有weight的情况下,只看useLargestChild参数,如果都无相关,那就走layout流程了,因此这里忽略
else {
alternativeMaxWidth = Math.max(alternativeMaxWidth,
weightedMaxWidth); if (useLargestChild && heightMode != MeasureSpec.EXACTLY) {
for (int i = 0; i < count; i++) {
final View child = getVirtualChildAt(i); if (child == null || child.getVisibility() == View.GONE) {
continue;
} final LinearLayout.LayoutParams lp =
(LinearLayout.LayoutParams) child.getLayoutParams(); float childExtra = lp.weight;
if (childExtra > 0) {
child.measure(
MeasureSpec.makeMeasureSpec(child.getMeasuredWidth(),
MeasureSpec.EXACTLY),
MeasureSpec.makeMeasureSpec(largestChildHeight,
MeasureSpec.EXACTLY));
}
}
}
}
}

#####3.2.2

weight的两种情况

这次我的注释比较少,主要是因为需要有一大段的文字来描述。

在weight计算方面,我们可以清晰的看到,weight为何是针对剩余空间进行分配的原理了。 我们打个比方,假如现在我们的LinearLayout的weightSum=10,总高度100,有两个子控件(他们的height=0dp),他们的weight分别为2:8。

那么在测量第一个子控件的时候,可用的剩余高度为100,第一个子控件的高度则是100*(2/10)=20,接下来可用的剩余高度为80

我们继续第二个控件的测量,此时它的高度实质上是80*(8/8)=80

到目前为止,看起来似乎都是正确的,但关于weight我们一直有一个疑问:**就是我们为子控件给定height=0dp和height=match_parent时我们就会发现我们的子控件的高度比是不同的,前者是2:8而后者是调转过来变成8:2 **

对于这个问题,我们不妨继续看看代码。

接下来我们会看到这么一个分支:

if ((lp.height != 0) || (heightMode != MeasureSpec.EXACTLY)) { } else {}

首先我们不管heightMode,也就是父类的测量模式,剩下一个判定条件就是lp.height,也就是子类的高度。

既然有针对这个进行判定,那就是意味着肯定在此之前对child进行过measure,事实上,在这里我们一早就对这个地方进行过描述,这个方法正是measureChildBeforeLayout()

还记得我们的measureChildBeforeLayout()执行的先行条件吗

YA,just u see,正是不满足(LinearLayout的测量模式非EXACTLY/child.height==0/child.weight/child.weight>0)之中的child.height==0

因为除非我们指定height=0,否则match_parent是等于-1,wrap_content是等于-2.

在执行measureChildBeforeLayout(),由于我们的child的height=match_parent,因此此时可用空间实质上是整个LinearLayout,执行了measureChildBeforeLayout()后,此时的mTotalLength是整个LinearLayout的大小

回到我们的例子,假设我们的LinearLayout高度为100,两个child的高度都是match_parent,那么执行了measureChildBeforeLayout()后,我们两个子控件的高度都将会是这样:

child_1.height=100

child_2.height=100

mTotalLength=100+100=200

在一系列的for之后,执行到我们剩余空间:

int delta = heightSize - mTotalLength;

(delta=100[linearlayout的实际高度]-200=-100)

没错,你看到的的确是一个负数。

接下来就是套用weight的计算公式:

share=(int) (childExtra * delta / weightSum)

即:share=-100(2/10)=-20;*

然后走到我们所说的if/else里面

if ((lp.height != 0) || (heightMode != MeasureSpec.EXACTLY)) {
// child was measured once already above...
// base new measurement on stored values
int childHeight = child.getMeasuredHeight() + share;
if (childHeight < 0) {
childHeight = 0;
} child.measure(childWidthMeasureSpec,
MeasureSpec.makeMeasureSpec(childHeight, MeasureSpec.EXACTLY));
}

我们知道**child.getMeasuredHeight()=100**

接着这里有一条int childHeight = child.getMeasuredHeight() + share;

这意味着我们的**childHeight=100+(-20)=80;**

接下来就是走child.measure,并把childHeight传进去,因此最终反馈到界面上,我们就会发现,在两个match_parent的子控件中,weight的比是反转的。

接下来没什么分析的,剩下的就是走layout流程了,对于layout方面,要讲的其实没什么东西,毕竟基本都是模板化的写法了。


###4.小结 在这里,我们花费了大篇幅讲解measureVertical()的流程,事实上对于LinearLayout来说,其最大的特性也正是两个方向的排布以及weight的计算方式。

在这里我们不妨回过头看一下,其实我们会发现在测量过程中,设计者总是有意分开含有weight和不含有weight的测量方式,同时利用height跟0比较来更加的细分每一种情况。

可能初看的时候觉得代码太多,事实上一轮分析下来,方向还是很清晰的。毕竟有weight的地方前期都给个标志跳过,在测量完需要的数据(比如父控件的总高度什么的)后,再根据父控件的数据和weight再针对进行二次测量。

在文章的最后,我们小结一下对于测量这里的算法的不同情况下的区别以及原理:

  • 父控件是match_parent(或者精确值),子控件拥有weight,并且高度给定为0:

    • 子控件的高度比例将会跟我们分配的layout_weight一致,原因在于weight二次测量时走了else分支,传入的是计算出来的share值
  • 父控件是match_parent(或者精确值),子控件拥有weight,但高度给定为match_parent(或者精确值):

    • 子控件高度比例将会跟我们分配的layout_weight相反,原因在于在此之前子控件测量过一次,同时子控件的测量高度为父控件的高度,在计算剩余空间的时候得出一个负值,加上自身的测量高度的时候反而更小
  • 父控件是wrap_content,子控件拥有weight:

    • 子控件的高度将会强行置为其wrap_content给的值并以wrap_content模式进行测量
  • 父控件是wrap_content,子控件没有weight:

    • 子控件的高度跟其他的viewgroup一致

【转载】LinearLayout 源码分析的更多相关文章

  1. [转载]URL 源码分析

    URI 引用包括最多三个部分:模式.模式特定部分和片段标识符.一般为: 模式:模式特定部分:片段 如果省略模式,这个URI引用则是相对的.如果省略片段标识符,这个URI引用就是一个纯URI. URI是 ...

  2. [转载]URI 源码分析

    需要提前了解下什么是URI,及URI和URL的区别: URI. URL 和 URN 的区别 URI 引用包括最多三个部分:模式.模式特定部分和片段标识符.一般为: 模式:模式特定部分:片段 如果省略模 ...

  3. [转载] Netty源码分析

    转载自http://blog.csdn.net/kobejayandy/article/details/11836813 Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高 ...

  4. ArrayList实现原理及源码分析之JDK8

    转载 ArrayList源码分析 一.ArrayList介绍 Java 集合框架主要包括两种类型的容器: 一种是集合(Collection),存储一个元素集合. 一种是图(Map),存储键/值对映射. ...

  5. 转载-HashMap1.7源码分析

    原文地址-https://www.cnblogs.com/chengxiao/p/6059914.html HashMap实现原理及源码分析   哈希表(hash table)也叫散列表,是一种非常重 ...

  6. EasyUI学习总结(三)——easyloader源码分析(转载)

    声明:这一篇文章是转载过来的,转载地址忘记了,原作者如果看到了,希望能够告知一声,我好加上去! easyloader模块是用来加载jquery easyui的js和css文件的,而且它可以分析模块的依 ...

  7. jQuery源码分析系列(转载来源Aaron.)

    声明:非本文原创文章,转载来源原文链接Aaron. 版本截止到2013.8.24 jQuery官方发布最新的的2.0.3为准 附上每一章的源码注释分析 :https://github.com/JsAa ...

  8. ArrayList源码分析超详细(转载)

    ArrayList源码分析超详细   ArrayList源码分析超详解 想要分析下源码是件好事,但是如何去进行分析呢?以我的例子来说,我进行源码分析的过程如下几步: 找到类:利用 IDEA 找到所需要 ...

  9. 【转载】Android异步消息处理机制详解及源码分析

    PS一句:最终还是选择CSDN来整理发表这几年的知识点,该文章平行迁移到CSDN.因为CSDN也支持MarkDown语法了,牛逼啊! [工匠若水 http://blog.csdn.net/yanbob ...

随机推荐

  1. Difference between Netbios and Host name

    Hostnames or NetBIOS names were used to provide a friendlier means of identifying servers or worksta ...

  2. Log4J使用实例---日志进行邮件发送或是存入数据库

    部分转摘:http://blog.csdn.net/azhao_dn/article/details/9118667 1.根类别(在类别层次结构的顶部,即全局性的日志级别) 配置根Logger,其语法 ...

  3. jedis在线文档网址

    jedis在线文档网址:http://tool.oschina.net/apidocs/apidoc?api=jedis-2.1.0

  4. netcore 使用log4net

    1.Install Install-Package log4net 2. conifg 創建文件:log4net.config <?xml version="1.0" enc ...

  5. OScached页面缓存知识总结一

    OSCache页面缓存 什么是OSCache? OSCache标记库由OpenSymphony设计,它是一种开创性的JSP定制标记应用,提供了在现有JSP页面之内实现快速内存缓冲的功能.OSCache ...

  6. Java 必看的 Spring 知识汇总

    Spring框架是由于软件开发的复杂性而创建的.Spring使用的是基本的JavaBean来完成以前只可能由EJB完成的事情.然而,Spring的用途不仅仅限于服务器端的开发.从简单性.可测试性和松耦 ...

  7. .Net MVC4 上传大文件,并保存表单

    1. 前台 cshtml </pre><pre name="code" class="csharp">@model BLL.BLL.Pr ...

  8. js_开发小技巧记录(一)

    (一) 生成从minNum到maxNum的随机数 <!DOCTYPE html> <html> <head> <meta charset="UTF- ...

  9. lnmp、lamp、lnmpa一键安装包(Updated: 2016-4-12)

    lnmp.lamp.lnmpa一键安装包(Updated: 2016-4-12)   文章目录 脚本特性 安装步骤 如何添加虚拟主机? 如何删除虚拟主机? 如何管理ftp账号? 数据备份 如何管理服务 ...

  10. centos7系统安装配置

    下载centos7 iso镜像 电脑里面本来有ubuntu系统,直接在u盘做好启动盘安装即可,选择手动分区(忘了),将原本ubuntu系统分区压缩200G.系统不要选择最小化,选择gnome的图形界面 ...