你应该知道$FFT$是用来处理多项式乘法的吧。

那么高精度乘法和多项式乘法有什么关系呢?

观察这样一个$20$位高精度整数$11111111111111111111$

我们可以把它处理成这样的形式:$\sum_{i=0}^{19}1\times10^i$

这样就变成了一个多项式了!

直接上代码吧(以$Luogu\ P1919$为例):

#include <cmath>
#include <cstdio>
#include <algorithm>
using std::swap; const int N = 1.4e5 + 10;
const double Pi = acos(-1);
int n, m, r[N], P, ans[N];
char s[N];
struct C { double x, y; } a[N], b[N];
C operator + (C a, C b) { return (C){ a.x + b.x, a.y + b.y }; }
C operator - (C a, C b) { return (C){ a.x - b.x, a.y - b.y }; }
C operator * (C a, C b) { return (C){ a.x * b.x - a.y * b.y, a.x * b.y + b.x * a.y }; } void FFT(C f[], int opt) {
for(int i = 0; i < n; ++i) if(i < r[i]) swap(f[i], f[r[i]]);
for(int len = 1, nl = 2; len < n; len = nl, nl <<= 1) {
C rot = (C){cos(Pi / len), opt * sin(Pi / len)};
for(int l = 0; l < n; l += nl) {
C w = (C){1, 0}; int r = l + len;
for(int k = l; k < r; ++k, w = w * rot) {
C x = f[k], y = w * f[k + len];
f[k] = x + y, f[k + len] = x - y;
}
}
}
} int main() {
scanf("%d%s", &n, s + 1);
for(int i = 1; i <= n; ++i) a[i - 1].x = s[n - i + 1] - '0';
scanf("%s", s + 1);
for(int i = 1; i <= n; ++i) b[i - 1].x = s[n - i + 1] - '0';
//将字符串转化为多项式的系数
--n;
for(m = n + n, n = 1; n <= m; n <<= 1, ++P);
for(int i = 0; i < n; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
//蝴蝶变换FFT
FFT(a, 1), FFT(b, 1);
for(int i = 0; i < n; ++i) a[i] = a[i] * b[i];
FFT(a, -1);
for(int i = 0; i <= m; ++i) ans[i] = (int)(a[i].x / n + .5);
for(int i = 0, tmp1, tmp2; i < m; ++i)
ans[i + 1] += (ans[i] / 10), ans[i] %= 10;
//处理进位(每个系数最多为两位数)
for(int i = m, flag = 0; i >= 0; --i) {
if(ans[i] != 0) flag = 1;
else if(!flag) continue;
printf("%d", ans[i]);
}//flag为前导零标记
return puts("") & 0;
}

$PS:$代码中没有处理$0\times0$的情况,请读者自行处理。

FFT实现高精度乘法的更多相关文章

  1. P1919 FFT加速高精度乘法

    P1919 FFT加速高精度乘法 传送门:https://www.luogu.org/problemnew/show/P1919 题意: 给出两个n位10进制整数x和y,你需要计算x*y. 题解: 对 ...

  2. BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法

    Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...

  3. SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法

    SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL 这是一道FFT求高精度的模板题. 参考:https://www.cnblogs.com/Rabbi ...

  4. HDU 1402 A * B Problem Plus (FFT求高精度乘法)

    A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDU - 1402 A * B Problem Plus (FFT实现高精度乘法)

    题意:计算A*B,A,B均为长度小于50000的整数. 这是FFT在大整数相乘中的一个应用,我本来想用NTT做的,但NTT由于取模很可能取炸,所以base必须设得很小,而且效率也比不上FFT. A和B ...

  6. 高精度乘法(FFT)

    学会了FFT之后感觉自己征服了世界! 当然是幻觉... 不过FFT还是很有用的,在优化大规模的动规问题的时候有极大效果. 一般比较凶残的计数动规题都需要FFT(n<=1e9). 下面是高精度乘法 ...

  7. [vijos P1040] 高精度乘法

    如果这次noip没考好,完全是因为从7月29日之后就没有再写过程序了.说起来,真是一个泪流满面的事实… 那这样一个弱智题练手恢复代码能力,竟然还花了我两个晚上(当然不是两整个晚上…) 第一天TLE了, ...

  8. 【PKU1001】Exponentiation(高精度乘法)

    Exponentiation Time Limit: 500MS   Memory Limit: 10000K Total Submissions: 145642   Accepted: 35529 ...

  9. hdu 1042 N!(高精度乘法 + 缩进)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1042 题目大意:求n!, n 的上限是10000. 解题思路:高精度乘法 , 因为数据量比较大, 所以 ...

随机推荐

  1. vijos 1004 伊甸园日历游戏 博弈+打表找规律

    描述 Adam和Eve玩一个游戏,他们先从1900.1.1到2001.11.4这个日期之间随意抽取一个日期出来.然后他们轮流对这个日期进行操作: 1 : 把日期的天数加1,例如1900.1.1变到19 ...

  2. C# 如何用多字符分割字符串

    用单字符分割字符串大家应该很熟悉,例如: string source = "dfd^Afdf^AAAAAA^Adfdf"; var list= source.Split('A'); ...

  3. asp.net RDLC报表入门

    Asp.net RDLC 报表入门 这几天帮给同事讲解Asp.net RDLC 报表方面的知识,顺便做个简单教程,在这里分享给大家. 由于图片多又大,写了一半,光上传图片就把我累个半死,所以我教把程放 ...

  4. Tensorflow 2.0.0-alpha 安装 Linux系统

    1.TensorFlow2.0的安装测试 Linux Tensorflow Dev Summit 正式宣布 Tensorflow 2.0 进入 Alpha 阶段. 基于 Anaconda 创建环境一个 ...

  5. MSSQL 构建临时表SQL

    declare @StartQuarter int declare @StartYear int declare @EndQuarter int declare @EndYear int declar ...

  6. C++之编译器与链接器工作原理

    原文来自:http://blog.sina.com.cn/s/blog_5f8817250100i3oz.html 这里并没不是讨论大学课程中所学的<编译原理>,只是写一些我自己对C++编 ...

  7. [device tree] How to decompile a compiled .dtb (device tree blog) into .dts (device tree source).

    $ ./out/target/product/project_name/obj/KERNEL_OBJ/scripts/dtc/dtc -I dtb -O dts -o decompiled.dts ~ ...

  8. python实战===用python对比两张图片的不同

    from PIL import Image from PIL import ImageChops def compare_images(path_one, path_two, diff_save_lo ...

  9. python实战===itchat

    import itchat itchat.login() friends=itchat.get_friends(update=True)[0:] male=female=other=0 for i i ...

  10. perl 函数参数传递与返回值(一)

    perl 函数参数传递与返回值(一) http://www.cnblogs.com/tobecrazy/archive/2013/06/11/3131887.html