【题目链接】

  1. http://www.lydsy.com/JudgeOnline/problem.php?id=2433

  2. http://221.192.240.123:8586/JudgeOnline/showproblem?problem_id=1668

【题目大意】

  题目已经讲得很清楚了

防剧透

防剧透

防剧透

防剧透

防剧透

防剧透

防剧透

防剧透

防剧透

【解题思路】

  首先可以发现一个性质:路径的转折点只能在矩形的顶点上。这个可以用任意三角形内一点到两顶点的距离<另一点到这两顶点的距离来证明。

  于是这个明显是有阶段性的,也即只能从左到右。于是可以Dp,当然也可以spfa或Dijkstra等等。

  算法关键在于如何求出任意两点间的距离。

  朴素做法要O(n^3),这明显是过不了的。

  我们考虑从每个点开始走,发现每次阻挡视野的都是刚刚走过的矩形的边。于是我们可以维护一个视野,用每个访问过的点更新视野的up or low。

Postscript:记得加上等号……

#include <cstdio>
#include <algorithm>
#include <cmath>
typedef long long ll;
const int N = 2000 + 9;
struct Point
{
int x,y;
Point(const int _x = 0,const int _y = 0):
x(_x),y(_y){}
}p[N * 4],S,T;
int n,pre[N],start;
double dis[N*4],v;
inline ll sqr(const int x){return 1ll*x*x;}
inline double Dis(const Point x,const Point y)
{return std::sqrt(sqr(y.x-x.x) + sqr(y.y-x.y));}
inline ll cpr(const Point x,const Point y,const Point z)
{
const ll x1 = y.x - x.x, y1 = y.y - x.y;
const ll x2 = z.x - x.x, y2 = z.y - x.y;
return x1*y2 - x2*y1;
}
bool check(const int up,const int low,const Point x,const Point y)
{
if (up && cpr(x,p[up],y) > 0 || low && cpr(x,p[low],y) < 0) return false;
return true;
}
double Dijkstra()
{
static bool ins[N*4];
for (start = 1; start <= n; ++start)
if (p[start].x >= S.x) break;
for (int i = start--; i <= n; ++i) dis[i] = 99999999.0;
dis[start] = 0; p[start] = S; dis[4*N - 1] = 999999999.0; pre[start] = -1;
while (1) {
int k = 4*N - 1;
for (int i = start; i <= n; ++i)
if (!ins[i] && dis[k] > dis[i]) k = i;
if (n == k) return dis[k];
ins[k] = 1;
if (k == 7)
k = 7;
int up = 0,low = 0; double tmp;
for (int i = k + 1; i <= n; ++i) {
if (check(up,low,p[k],p[i]))
if (!ins[i] && dis[i] > (tmp = dis[k] + Dis(p[k],p[i])))
dis[i] = tmp;
if (((i-1)%4+1)&1 && (!up || cpr(p[k],p[up],p[i]) <= 0)) up = i;
else if (!(((i-1)%4+1)&1) && (!low || cpr(p[k],p[low],p[i]) >= 0)) low = i;
if (up && low && cpr(p[k],p[up],p[low]) > 0) break;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("2433.in","r",stdin);
freopen("2433.out","w",stdout);
#endif
scanf("%d",&n);
for (int i = 1; i <= n; ++i) {
scanf("%d%d%d%d",&p[i*4-2].x,&p[i*4-2].y,&p[i*4-1].x,&p[i*4-1].y);
p[i*4-3] = Point(p[i*4-2].x,p[i*4-1].y);
p[i*4] = Point(p[i*4-1].x,p[i*4-2].y);
}
scanf("%d%d%d%d",&S.x,&S.y,&T.x,&T.y);
n *= 4;
if (S.x > T.x) std::swap(S,T);
for (; n; --n)
if (p[n].x <= T.x) break;
p[++n] = T;
scanf("%lf",&v);
printf("%.10f\n",Dijkstra()/v);
}

  

[bzoj2433][Noi2011]智能车比赛的更多相关文章

  1. 2433: [Noi2011]智能车比赛 - BZOJ

    Description 新一届智能车大赛在JL大学开始啦!比赛赛道可以看作是由n个矩形区域拼接而成(如下图所示),每个矩形的边都平行于坐标轴,第i个矩形区域的左下角和右上角坐标分别为(xi,1,yi, ...

  2. Noi2011 : 智能车比赛

    假设S在T左边,那么只能往右或者上下走 f[i]表示S到i点的最短路 f[i]=min(f[j]+dis(i,j)(i能看到j)) 判断i能看到j就维护一个上凸壳和一个下凸壳 时间复杂度$O(n^2) ...

  3. [NOI2011]智能车比赛 (计算几何 DAG)

    /* 可以发现, 最优路径上的所有拐点, 基本上都满足一定的性质, 也就是说是在矩形上的拐角处 所以我们可以把他们提出来, 单独判断即可 由于我们提出来的不超过2n + 2个点, 我们将其按照x坐标排 ...

  4. 【[NOI2011]智能车比赛】(建图+spfa+坑爹精度)

    过了这题我就想说一声艹,跟这个题死磕了将近6个小时,终于是把这个题死磕出来了.首先看到这个题的第一反应,和当初做过的一个房间最短路比较相似,然后考虑像那个题那样建边,然后跑最短路.(具体建边方法请参考 ...

  5. 【LOJ】#2443. 「NOI2011」智能车比赛

    题解 显然是个\(n^2\)的dp 我们要找每个点不穿过非赛道区域能到达哪些区域的交点 可以通过控制两条向量负责最靠下的上边界,和最靠上的下边界,检查当前点在不在这两条向量之间即可,对于每个点可以\( ...

  6. BZOJ 2433 智能车比赛(计算几何+最短路)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2433 题意:若干个矩形排成一排(同一个x之上最多有一个矩形),矩形i和i+1相邻.给定两 ...

  7. 智能车学习(十五)——K60野火2013版例程

    一.中断函数注册方法: 1.格式: 配置某个功能的中断 注册中断函数 开启中断 2.一个例子 pit_init_ms(PIT0,);//定时中断初始化 set_vector_handler(PIT0_ ...

  8. K60平台智能车开发工作随手记

    (图片仅为示例,并不一定固定为这种造型) 第十二届全国大学生智能汽车竞赛有一个分项是光电四轮车的竞速(任务A),Seven她们组采购到的配件使用了freescale Crotex-M4内核的CPU,T ...

  9. 【sky第二期--PID算法】--【智能车论坛】

    [sky第二期--PID算法] 想学PID的可以来[智能车论坛]这里有我发布的资料http://bbs.tekbots.eefocus.com/forum.php?mod=viewthread& ...

随机推荐

  1. Codeforces 321E Ciel and Gondolas

    传送门:http://codeforces.com/problemset/problem/321/E [题解] 首先有一个$O(n^2k)$的dp. # include <stdio.h> ...

  2. JS之递归(例题:猴子吃桃)

    例题1:公园里有200个桃子,猴子每天吃掉一半以后扔掉一个,问6天以后还剩余多少桃子? var sum = 200; for(var i= 0;i<6;i++) { sum = parseInt ...

  3. LCD实验学习笔记(五):MMU

    内存管理分别页表机制和内存分配机制两块. 页表机制就是管理设备真实物理地址与虚拟地址的动态或静态的映射,基于cpu内部的mmu(内存管理单元)进行. CP15(协处理器)的C0(缓存)是一级页表,含4 ...

  4. 数字签名算法rsa

    数字签名算法消息传递模型 由消息发送方构建密钥对,这里由甲方完成. 由消息发送方公布公钥至消息接收方,这里由甲方将公钥公布给乙方. 注意如加密算法区别,这里甲方使用私钥对数据签名,数据与签名形成一则消 ...

  5. 使用PTGui软件将全景图变成鱼眼图

    把全景图变成鱼眼图.方法一部分是自己研究的,一部分是参考学妹街景合成鱼眼照片的方法. 需要使用的软件是PTGui.是个收费软件,价格还不便宜.操作一下,安装完后就可以开始合成鱼眼图了. 加载图像 打开 ...

  6. 【Python学习笔记】使用Python进行主成分分析

    使用sklearn库中的PCA类进行主成分分析. 导入要用到的库,还没有的直接pip安装就好了. from sklearn.decomposition import PCA import numpy ...

  7. shellcheck 帮助你写出更好的脚本

    简介 shellcheck 是一款实用的 shell脚本静态检查工具. 首先,可以帮助你提前发现并修复简单的语法错误,节约时间.每次都需要运行才发现写错了一个小地方,确实非常浪费时间. 其次,可以针对 ...

  8. 给windows设置隐藏文件夹的方法

    cls @ECHO OFF title Folder Private if EXIST "HTG Locker" goto UNLOCK if NOT EXIST Private ...

  9. ue4.3正式版源码链接

    ue4.3正式版源码链接 http://tieba.baidu.com/p/3170253742

  10. 设计模式之笔记--桥接模式(Bridge)

    桥接模式(Bridge) 定义 桥接模式(Bridge),将抽象部分与它的实现部分分离,使它们都可以独立地变化. 类图 描述 Abstraction:定义抽象部分的接口,通常在这个接口里面要维护一个实 ...