卢克生日那天,汉来找卢克玩扑克牌,玩着玩着汉觉得太没意思了,于是决定给卢克一个考验
汉把一副扑克牌(54张)随机洗匀,倒扣着放成一摞。然后卢克从上往下一次翻开每张牌,每翻开一张黑桃,红桃,梅花或方块,就把它放到对应的花色的堆里去。
汉想问问卢克,得到A张黑桃,B张红桃,C张梅花,D张方块需要翻开的牌的张数的期望值E是多少
特殊的,如果翻开的牌是大小王,那么卢克可以把它作为某种花色的牌放入对应堆中。卢克会采取最优策略,使得放入之后E的值尽可能的小
显然卢克靠原力的感知可以无视这个问题,汉为给卢克丢了一个没意义的问题而懊恼,于是决定把问题丢给还是绝地学徒的你
虽然你并不能善用原力,但是好在你会c++,于是你可以靠程序解决这个问题。
卢克和汉还在玩牌,所以你可以在计算出结果后直接将答案汇报给他们
0<=A,B,C,D<=15 四舍五入保留三位小数输出

f[a,b,c,d,x,y]表示黑桃取了a张,红桃取了b张,梅花取了c张,方块取了d张,小王状态为x,大王状态为y时的期望值
具体来说,x = 4表示没有用过小王,x = 0~3表示用过小王,且把小王作为对应的花色(0代表黑桃,1代表红桃,2代表梅花,3代表方块)
可以知道的是,随着翻开的牌数的增加,得到某种花色的概率是在变化的。
当前已经翻开的牌总数sum = (a + b + c + d + (x == 4) + (y == 4))。到目前为止,还剩下54-sum张牌,其中13-a张黑桃,13-b张红桃,13-c张梅花,13-d张方块
以黑桃为例:
翻开一张黑桃的概率为(13 - a)/(54 - sum)。还需要翻开的牌的期望张数为f[a+1,b,c,d,x,y]。对于红桃,梅花,方块,情况类似
特别地,当x = 4时,有1/(54 - sum)的概率翻开小王。根据题意,应选择把小王看做某种花色,是期望值尽量小,即min{f[a,b,c,d,x',y]}(0<=x'<=3).对于大王,情况类似
对于大王,情况类似

方程显然且省略,建议直接看代码

初值:若已经翻开的牌数达到了题目要求的数量,则期望值位0.例如已经翻开的黑桃张数为a+(x==0)+(y==0),其余同理
目标f[0,0,0,0,4,4]

在数学期望递推,数学期望Dp中,通常把终止状态作为初值,把起始状作为目标状态,倒着进行计算。
原因:以本题为例:
根据数学期望的定义,若我们正着计算,则还需求出从起始状态到达每个终止状态的概率,与F值相乘求和才能得到答案,增加了难度,且易出错
而倒着计算,因为起始状态F[0,0,0,0,4,4]唯一,所以它的概率一定为1,最后直接输出f[0,0,0,0,4,4]即为所求

 #include<bits/stdc++.h>
using namespace std;
int A, B, C, D;
double f[][][][][][];
bool vis[][][][][][]; inline int read() {
int x = , y = ;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') y = -;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << ) + (x << ) + ch - '';
ch = getchar();
}
return x * y;
} double Dp_to_make_ans(int a, int b, int c, int d, int p, int q) {
if(vis[a][b][c][d][p][q]) return f[a][b][c][d][p][q];
vis[a][b][c][d][p][q] = ;
int h = a, j = b, k = c, l = d;
if(p == ) h++; if(p == ) j++; if(p == ) k++; if(p == ) l++;
if(q == ) h++; if(q == ) j++; if(q == ) k++; if(q == ) l++;
if(h >= A && j >= B && k >= C && l >= D) return f[a][b][c][d][p][q] = ;
int sum = h + j + k + l;
double f_ans = ;
if(a < ) f_ans += Dp_to_make_ans(a + , b, c, d, p, q) * ( - a) / ( - sum);
if(b < ) f_ans += Dp_to_make_ans(a, b + , c, d, p, q) * ( - b) / ( - sum);
if(c < ) f_ans += Dp_to_make_ans(a, b, c + , d, p, q) * ( - c) / ( - sum);
if(d < ) f_ans += Dp_to_make_ans(a, b, c, d + , p, q) * ( - d) / ( - sum);
double shiki;
if(p == ) {
shiki = ;
for(int i = ; i <= ; ++i) shiki = min(shiki, Dp_to_make_ans(a, b, c, d, i, q));
f_ans = f_ans + shiki / ( - sum);
}
if(q == ) {
shiki = ;
for(int i = ; i <= ; ++i) shiki = min(shiki, Dp_to_make_ans(a, b, c, d, p, i));
f_ans = f_ans + shiki / ( - sum);
}
return f[a][b][c][d][p][q] = f_ans;
} int main() {
// freopen("test.in", "r", stdin);
// freopen("test.out", "w", stdout);
A = read(), B = read(), C = read(), D = read();
double ans = Dp_to_make_ans(, , , , , );
if(ans > ) ans = -;
printf("%0.3lf", ans);
return ;
}

TYVJ2002 扑克牌的更多相关文章

  1. SCNU 2015ACM新生赛初赛【1007. ZLM的扑克牌】解题报告

            题目链接详见SCNU 2015新生网络赛 1007. ZLM的扑克牌 .         其实我在想这题的时候,还想过要不要设置求最小的排列,并且对于回文数字的话,可以把扑克牌折起来( ...

  2. Java 用LinkdeList实现52张扑克牌

    用LinkdeList实现52张扑克牌(不含大小王)的洗牌功能.提示:花色 ,和数字分别用数组存储. import java.util.LinkedList; import java.util.Ran ...

  3. C算法编程题(一)扑克牌发牌

    前言 上周写<我的编程开始(C)>这篇文章的时候,说过有时间的话会写些算法编程的题目,可能是这两天周末过的太舒适了,忘记写了.下班了,还没回去,闲来无事就写下吧. 因为写C++的编程题和其 ...

  4. JAVA collection集合之 扑克牌游戏

    主要内容:这里使用collection集合,模拟香港电影中大佬们玩的扑克牌游戏. 1.游戏规则:两个玩家每人手中发两张牌,进行比较.比较每个玩家手中牌最大的点数,大小由A-2,点数大者获胜.如果点数相 ...

  5. Java程序设计之扑克牌

    这段代码的主要实现功能扑克牌的洗牌和发牌功能,一副牌,红桃,黑桃,梅花,方片,A~K,不含大小王. 构造一个class. 首先是声明花色: private String[] sign={"方 ...

  6. js运动框架之掉落的扑克牌(重心、弹起效果)

    玩过电脑自带纸牌游戏的同志们应该都知道,游戏过关后扑克牌会依次从上空掉落,落下后又弹起,直至"滚出"屏幕. 效果如图:    这个案例的具体效果就是:点击开始运动,纸牌会从右上角掉 ...

  7. javascript练习-扑克牌

    下面用枚举类型来实现一副扑克牌的类: //定义一个玩牌的类 function Card(suit,rank){ function inherit(p){ if(p==null) throw TypeE ...

  8. JavaScript学习笔记-实现枚举类型,扑克牌应用

    //实现枚举类型,扑克牌应用 function creatEnum(p){     //构造函数     var Enumeration = function(){throw 'can not Ins ...

  9. 华为OJ题目:扑克牌大小

    题目描述: 扑克牌游戏大家应该都比较熟悉了,一副牌由54张组成,含3~A.2各4张,小王1张,大王1张.牌面从小到大用如下字符和字符串表示(其中,小写joker表示小王,大写JOKER表示大王):3  ...

随机推荐

  1. Item 9 覆盖equals时总要覆盖hashCode

    为什么覆盖equals时,总要覆盖hashCode?   原因是,根据Object规范: 如果两个对象根据equals(Object)方法比较是相等的,那么调用这两个对象中任意一个对象的hashCod ...

  2. 【20151105noip膜你赛】bzoj3652 bzoj3653

    题目仿佛在讽刺我... 第一题: 题解: 考虑枚举区间右端点,维护所以左到当前的 and 和 or .注意 and 每次变化至少有一个二进制位从1变 0,or 每次至少有一个位从0变 1,所以最多有l ...

  3. Python 源码学习之内存管理 -- (转)

    Python 的内存管理架构(Objects/obmalloc.c): _____ ______ ______ ________ [ int ] [ dict ] [ list ] ... [ str ...

  4. linux下暴力破解工具hydra【转】

    一.简介 Number one of the biggest security holes are passwords, as every password security study shows. ...

  5. js作用域与上下文

    作用域:与调用函数,访问变量的能力有关 作用域分为:局部和全局(在局部作用域里可以访问到全局作用域的变量,但在局部作用域外面就访问不到局部作用里面所设定的变量) 上下文:与this关键字有关 是调用当 ...

  6. kernel defconfig

    Some defconfig files are placed on below path. Only one *_defconfig can be selected. android/kernel/ ...

  7. c++设计模式系列----factory模式

    问题: 假设我们要开发一个游戏--打怪物,首先,游戏有分等级,假设有初级,中级两个个等级(就不用flappy bird模式了,那个比较特殊,对一个玩家来说是难以具有持久吸引力的!),不同的等级怪物也是 ...

  8. HDU 5116 Everlasting L

    题目链接:HDU-5116 题意:给定若干个整数点,若一个点集满足P = {(x, y), (x + 1, y), . . . , (x + a, y), (x, y + 1), . . . , (x ...

  9. how to create view (windows)

    View Server List  IP address: 200.xx.xx.xx How to create a new view ssh new view server by your Unix ...

  10. [New learn]@class和#import的区别使用

    1.简介 我们在查看代码的时候经常会发现有些地方使用@class而有些地方使用#import,他们到底有什么区别呢, 本文意图去归纳和总结这两种类引用的是的处理方法和规则. 2.分析 此小节会通过一些 ...