dijkstra算法模板及其用法
Dijkstra算法
1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
模板:
const int INF=0x3f3f3f3f;
const int maxn=; int dist[maxn],g[maxn][maxn],N;
bool vis[maxn]; void dijkstra()
{
for(int i=;i<=N;i++)
dist[i]=(i==)?:INF;
memset(vis,,sizeof(vis)); for(int i=;i<=N;i++)
{
int mark=-,mindis=INF;
for(int j=;j<=N;j++)
{
if(!vis[j]&&dist[j]<mindis)
{
mindis=dist[j];
mark=j;
}
}
vis[mark]=; for(int j=;j<=N;j++)
{
if(!vis[j])
{
dist[j]=min(dist[j],dist[mark]+g[mark][j]);
}
}
}
}
内存优化后的Dijkstra:
int dist[N], point[N], n, m;
bool vis[N]; std::vector<pair<int, int> > g[N];//g[i][j] = <fi, se> 为边(i , fi)的距离se; void dijkstra()
{
for(int i=;i<=n;i++)
dist[i]=(i==)?:INF;
memset(vis,,sizeof(vis)); for(int i=;i<=n;i++)
{
int mark=-,mindis=INF;
for(int j=;j<=n;j++)
{
if(!vis[j]&&dist[j]<mindis)
{
mindis=dist[j];
mark=j;
}
}
vis[mark]=; for(int j=;j<g[mark].size();j++)
{
if(!vis[g[mark][j].fi])
{
dist[g[mark][j].fi]=min(dist[g[mark][j].fi],dist[mark]+g[mark][j].se);
}
}
}
}
堆优化后的Dijkstra:
// 堆优化dijkstra void dijkstra()
{
memset(dist,,sizeof(dist));
dist[S]=;
priority_queue<pII> q; /// -距离,点
q.push(make_pair(,S)); while(!q.empty())
{
pII tp=q.top(); q.pop();
LL u=tp.second;
if(vis[u]==true) continue;
vis[u]=true;
for(LL i=Adj[u];~i;i=edge[i].next)
{
LL v=edge[i].to;
LL len=edge[i].len;
if(vis[v]) continue;
if(dist[v]>dist[u]+len)
{
dist[v]=dist[u]+len;
q.push(make_pair(-dist[v],v));
}
}
}
}
dijkstra算法模板及其用法的更多相关文章
- 最短路径---dijkstra算法模板
dijkstra算法模板 http://acm.hdu.edu.cn/showproblem.php?pid=1874 #include<stdio.h> #include<stri ...
- 【hdu 2544最短路】【Dijkstra算法模板题】
Dijkstra算法 分析 Dijkstra算法适用于边权为正的情况.它可用于计算正权图上的单源最短路( Single-Source Shortest Paths, SSSP) , 即从单个源点出发, ...
- 图的最短路径算法Dijkstra算法模板
Dijkstra算法:伪代码 //G为图,一般设为全局变量,数组d[u]为原点到达个点的额最短路径, s为起点 Dijkstra(G, d[u], s){ 初始化: for (循环n次){ u = 是 ...
- dijkstra算法 模板
算法理解见: https://www.bilibili.com/video/av18586085/?p=83 模板: #define INF 1000000000 int N; int dist[10 ...
- hdu-2544-最短路(dijkstra算法模板)
题目链接 题意很清晰,入门级题目,适合各种模板,可用dijkstra, floyd, Bellman-ford, spfa Dijkstra链接 Floyd链接 Bellman-Ford链接 SPFA ...
- Dijkstra算法模板
自己对Dijstra算法的理解是: 首先输入保存点,边的权值(注意无向图和有向图在保存时的区别). 将表示从起点st到顶点 i 的距离的d[ i ]数组的每一个值初始化为INF,令d[st] = 0. ...
- 最短路径Dijkstra算法模板题---洛谷P3371 【模板】单源最短路径(弱化版)
题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入格式 第一行 ...
- 迪杰斯特拉/dijkstra 算法模板(具体凝视)
#include <iostream> #include <malloc.h> #include <cstring> #include <stack> ...
- 最短路Dijkstra算法模板
// // dijkstra妯℃澘.cpp // algorithm // // Created by david.xu on 2018/8/6. // Copyright 漏 2018骞?david ...
随机推荐
- hadoop+spark 集群的安装
1.安装连接 https://www.cnblogs.com/zengxiaoliang/p/6478859.html
- hdu1002 A + B Problem II(大数题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1002 A + B Problem II Time Limit: 2000/1000 MS (Java/ ...
- Python第三方库SnowNLP(Simplified Chinese Text Processing)快速入门与进阶
简介 github地址:https://github.com/isnowfy/snownlp SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的 ...
- Keil MDK 5.14 仿真时System Viewer菜单显示空白和Peripherals菜单无外设寄存器
keil mdk5.14新建工程进行仿真时,进入Debug环境发现System Viewer菜单显示空白,Peripherals菜单没有外设寄存器.如图1和图2所示.打开Oprons for Targ ...
- notifier chain — 内核通知链【转】
转自:http://blog.csdn.net/g_salamander/article/details/8081724 大多数内核子系统都是相互独立的,因此某个子系统可能对其它子系统产生的事件感兴趣 ...
- PXC 避免加入集群时发生SST
环境 现有集群节点: 192.168.99.210:3101 新加入节点: 192.168.99.211:3101 通过xtrabackup备份还原实例,并通过同步方式追数据: 已有节点情况: roo ...
- 在Caffe中使用 DIGITS(Deep Learning GPU Training System)自定义Python层
注意:包含Python层的网络只支持单个GPU训练!!!!! Caffe 使得我们有了使用Python自定义层的能力,而不是通常的C++/CUDA.这是一个非常有用的特性,但它的文档记录不足,难以正确 ...
- ACE_INET_Addr类 API
ACE_INET_Addr类,在这个ACE_网络框架中,应该是比较重要的辅助类,该类主要封装了C SOCKET 的地址对象,通过外观封装的模式,把struct sockaddr_in封装在内.方便用户 ...
- form 表单获取所有数据 封装方法
function getFormJson(frm) { var o = {}; var a = $(frm).serializeArray(); $.each(a, function () { if ...
- js获取鼠标的位置
<!doctype html><html><head><meta charset="utf-8"><title>获取鼠标 ...