Time travel

http://acm.hdu.edu.cn/showproblem.php?pid=4418

分析:

  因为走到最后在折返,可以将区间复制一份,就变成了只往右走,012343210。

  写出转移方程:

$f[t] = 0$

$f[i] = p_1 \times (f[i +1] + 1) + p_2 \times (f[i +2] + 2) + \cdots$

$ =\sum\limits_{j=1}^{m}p_j \times (f[i + j] + j) $

$= \sum\limits_{j=1}^{m}p_j \times f[i + j] + \sum\limits_{j=1}^{m}p_j\times j$

然后列出线性方程组,用高斯消元求解。

$f[i] = \sum\limits_{j=1}^{m}p_j \times f[i + j] + \sum\limits_{j=1}^{m}p_j\times j$

$\sum\limits_{j=1}^{m}p_j\times j = f[i] - \sum\limits_{j=1}^{m}p_j \times f[i + j]$

补上其他项就是:

$sum =0 \times f[0] +0 \times f[1] + \cdots + f[i] + p_1 \times f[i+1] + p_2 \times f[i+2] + \cdots +0 \times f[n-1] + 0 \times f[n]$

首先bfs判一下能不能到达这个点。

代码:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
}
const int N = ;
const double eps = 1e-;
double A[N][N], p[N], sum;
bool vis[N];
int n, m, s, t;
int q[N]; bool bfs() {
memset(vis, false, sizeof(vis));
int L = , R = ;
vis[s] = ;
q[++R] = s;
while (L <= R) {
int u = q[L ++];
for (int i=; i<=m; ++i) {
int v = (u + i) % n;
if (!vis[v] && fabs(p[i]) > eps) vis[v] = , q[++R] = v;
}
}
return vis[t] || vis[n - t]; // n-t折叠后的另一侧的点
}
void build() {
memset(A, , sizeof(A));
for (int i=; i<n; ++i) {
A[i][i] += ;
if (!vis[i]) { A[i][n] = 1e9; continue;}
if (i == t || i == n - t) { A[i][n] = ; continue; }
A[i][n] = sum;
for (int j=; j<=m; ++j)
A[i][(i + j) % n] -= p[j];
}
}
void Gauss() {
for (int k=; k<n; ++k) {
int r = k;
for (int i=k+; i<n; ++i)
if (fabs(A[i][k]) > fabs(A[r][k])) r = i;
if (k != r) for (int j=k; j<n; ++j) swap(A[k][j], A[r][j]);
for (int i=k+; i<n; ++i) {
if (fabs(A[i][k]) > eps) {
double t = A[i][k] / A[k][k];
for (int j=k+; j<=n; ++j) A[i][j] -= t * A[k][j]; //小于等于n
}
}
}
for (int i=n-; i>=; --i) {
for (int j=i+; j<=n; ++j)
A[i][n] -= A[j][n] * A[i][j];
A[i][n] /= A[i][i];
}
printf("%.2lf\n",A[s][n]);
}
int main() {
int T, d;
scanf("%d",&T);
while (T--) {
scanf("%d%d%d%d%d",&n, &m, &t, &s, &d);
n = (n - ) << ;
sum = ;
for (int i=; i<=m; ++i) {
scanf("%lf",&p[i]);
p[i] = p[i] / 100.0;
sum += p[i] * i;
}
if (s == t) { puts("0.00");continue; }
if (d) s = (n - s) % n;
if (!bfs()) { puts("Impossible !"); continue;}
build();
Gauss();
}
return ;
}

HDU 4418 Time travel的更多相关文章

  1. HDU 4418 Time travel 期望dp+dfs+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4418 Time travel Time Limit: 2000/1000 MS (Java/Othe ...

  2. [ACM] hdu 4418 Time travel (高斯消元求期望)

    Time travel Problem Description Agent K is one of the greatest agents in a secret organization calle ...

  3. hdu 4418 Time travel 概率DP

    高斯消元求期望!! 将n时间点构成2*(n-1)的环,每一点的期望值为dp[i]=dp[i+1]*p1+dp[i+2]*p2+……+dp[i+m]*pm+1. 这样就可以多个方程,利用高斯消元求解. ...

  4. 【HDU】4418 Time travel

    http://acm.hdu.edu.cn/showproblem.php?pid=4418 题意:一个0-n-1的坐标轴,给出起点X.终点Y,和初始方向D(0表示从左向右.1表示从右向左,-1表示起 ...

  5. Time travel HDU - 4418(高斯消元)

    Agent K is one of the greatest agents in a secret organization called Men in Black. Once he needs to ...

  6. Time travel HDU - 4418 (概率DP)

    对于每个点两个方向(两头只有一个方向)建一个点,然后预处理出每个点走k(1≤k≤n)k(1\le k\le n)k(1≤k≤n)到哪个点,列出方程式高斯消元就行了.记得前面bfsbfsbfs出那些点不 ...

  7. hdu 4481 Time travel(高斯求期望)(转)

    (转)http://blog.csdn.net/u013081425/article/details/39240021 http://acm.hdu.edu.cn/showproblem.php?pi ...

  8. 【HDOJ】4418 Time travel

    1. 题目描述K沿着$0,1,2,\cdots,n-1,n-2,n-3,\cdots,1,$的循环节不断地访问$[0, n-1]$个时光结点.某时刻,时光机故障,这导致K必须持续访问时间结点.故障发生 ...

  9. hdu 4418 高斯消元求期望

    Time travel Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. 理解Underscore的设计架构

    在一个多月的毕业设计之后,我再次开始了Underscore的源码阅读学习,断断续续也写了好些篇文章了,基本把一些比较重要的或者个人认为有营养的函数都解读了一遍,所以现在学习一下Underscore的整 ...

  2. 移动端适配插件(flexible.js)

    ;(function(win, lib) { var doc = win.document; var docEl = doc.documentElement; var metaEl = doc.que ...

  3. PyCharm Django项目开发的调试方法

    下面介绍两种PyCharm Django项目开发的调试方法: 方法一: 1. 使用PyCharm 自带的django项目Debug工具, 当然前提条件是django项目环境已经搭建好了. 2. 在代码 ...

  4. 牛客网多校训练第一场 E - Removal(线性DP + 重复处理)

    链接: https://www.nowcoder.com/acm/contest/139/E 题意: 给出一个n(1≤n≤1e5)个整数(范围是1至10)的序列,求从中移除m(1≤m≤min(n-1, ...

  5. Spring(十八)之页面重定向

    首先说明,该示例的maven依赖可以复用Spring(十七)之表单处理还有 还有就是对应的web.xml和servlet.xml文件都能复用,不必再次修改. 说到重定向不得不提到一个转发.这里概述一下 ...

  6. Elementui 导航组件和Vuejs路由结合

    Elementui 导航组件和Vuejs路由结合, 达到点击导航切换路由,根据路由定位导航 一下是nav.vue代码,导航数据以json格式配置 <template> <el-men ...

  7. idea删除module

    先remove , 再点击delete

  8. 【luogu P1351 联合权值】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1351 做了些提高组的题,不得不说虽然NOIP考察的知识点虽然基本上都学过,但是做起题来还是需要动脑子的. 题 ...

  9. $Self~Problem~C~:~Samsara$

    题目背景: 在这个\(Canman\)界的人都知道,世界上最伟大的修道者 -- \(Felling\),曾经结束了\(Canman\)的无垠盏之灾,守护了\(Canman\)的和平.在无垠盏之灾的最后 ...

  10. OC - 时间日期类NSDate

    OC - 时间日期类NSDate //NSDate 时间日期类 NSDate 二进制数据流 { //1.获取当前时间 零时区的时间 //显示的是格林尼治的时间: 年-月-日 时:分:秒:+时区 NSD ...