MapReduce程序——WordCount(Windows_Eclipse + Ubuntu14.04_Hadoop2.9.0)
本文主要参考《Hadoop应用开发技术详解(作者:刘刚)》
一、工作环境
Windows7: Eclipse + JDK1.8.0
Ubuntu14.04:Hadoop2.9.0
二、准备工作——导入JAR包
1. 建一个Hadoop专用的工作空间
2. 在工作空间的目录下建一个专门用来存放开发MapReduce程序所需的Hadoop依赖的JAR包的文件夹
所需的JAR包在Ubuntu中$HADOOP_HOME/share/hadoop下,将JAR包复制到刚刚建好的文件夹中
需要的JAR包如下,可能有部分重复:
$HADOOP_HOME/share/hadoop/common & $HADOOP_HOME/share/hadoop/common/lib
$HADOOP_HOME/share/hadoop/hdfs & $HADOOP_HOME/share/hadoop/hdfs/lib
$HADOOP_HOME/share/hadoop/httpfs/tomcat/lib
$HADOOP_HOME/share/hadoop/kms/tomcat/lib
$HADOOP_HOME/share/hadoop/mapreduce & $HADOOP_HOME/share/hadoop/mapreduce/lib
$HADOOP_HOME/share/hadoop/tools/lib
$HADOOP_HOME/share/hadoop/yarn & $HADOOP_HOME/share/hadoop/yarn/lib
3. 新建用户库
Windows → Preference → Java → Build Path → User Libraries → New...
看到如下界面:
点击OK后看到如下界面:
点击Add External JARs... → 在刚刚建好的文件夹中选中所有JAR包 → 打开 → OK
用户库创建成功!
三、创建一个Java工程
File → New → Java Project
除了红框的内容,其他选项默认
右击项目名 → Build Path → Add Libraries... → User Library → 选中建好的用户库
四、MapReduce代码的实现
1. WordMapper类
package wordCount; import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; // 继承Mapper接口,设置Map的输入类型为<Object, Text>,输出类型为<Text, IntWritable>
public class WordMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1); // one表示单词出现一次
private Text word = new Text(); // word用于存储切下来的词
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); // 对输入的行切词
while (itr.hasMoreTokens()) {
word.set(itr.nextToken()); // 切下来的单词存入word
context.write(word, one);
}
}
}
2. WordReducer类
package wordCount; import java.io.IOException; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; // 继承Reducer接口,设置Reduce的输入类型为<Text, IntWritable>,输出类型为<Text, IntWritable>
public class WordReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); // result记录单词的频数
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
// 对获取的<key, IntWritable>计算value的和
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum); // 将频数设置到result中
context.write(key, result); // 收集结果
}
}
3. WordMain驱动类
package wordCount; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class WordMain { public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
// 检查运行命令
if (otherArgs.length != 2) {
System.err.println("Usage: wordCount <in> <out>");
System.exit(2);
}
// 配置作业名
Job job = new Job(conf, "word count");
// 配置作业的各个类
job.setJarByClass(WordMain.class);
job.setMapperClass(WordMapper.class);
job.setCombinerClass(WordReducer.class);
job.setReducerClass(WordReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
五、打包成JAR文件
右击项目名 → Export → Java → JAR file
看到如下界面:
除了红框的内容,其他选项默认
点击Finish
JAR文件生成成功!
六、部署和运行
1. 把刚刚生成的JAR文件发送到Hadoop集群的Master节点的$HADOOP_HOME下面
2. 在Master节点的$HADOOP_HOME下面创建两个待统计词频的文件,file1.txt和file2.txt
file1.txt
Hello, I love coding
Are you OK?
Hello, I love hadoop
Are you OK?
file2.txt
Hello I love coding
Are you OK ?
Hello I love hadoop
Are you OK ?
3. 上传文件到HDFS系统中
$ hdfs dfs -put ./file* input
查看是否上传成功
$ hdfs dfs -ls input
4. 运行程序
$ hdfs dfs -rm -r output #如果HDFS系统中存在output目录
$ hadoop jar wordCount.jar wordCount.WordMain input/file* output
5. 查看运行结果
$ hdfs dfs -cat output/*
以上
MapReduce程序——WordCount(Windows_Eclipse + Ubuntu14.04_Hadoop2.9.0)的更多相关文章
- 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行
今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...
- 第一个MapReduce程序——WordCount
通常我们在学习一门语言的时候,写的第一个程序就是Hello World.而在学习Hadoop时,我们要写的第一个程序就是词频统计WordCount程序. 一.MapReduce简介 1.1 MapRe ...
- Hadoop 6、第一个mapreduce程序 WordCount
1.程序代码 Map: import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.h ...
- MapReduce程序(一)——wordCount
写在前面:WordCount的功能是统计输入文件中每个单词出现的次数.基本解决思路就是将文本内容切分成单词,将其中相同的单词聚集在一起,统计其数量作为该单词的出现次数输出. 1.MapReduce之w ...
- 使用Eclipse编译运行MapReduce程序 Hadoop2.6.0_Ubuntu/CentOS
使用Eclipse编译运行MapReduce程序 Hadoop2.6.0_Ubuntu/CentOS 2014-10-10 (updated: 2016-05-22) 64246 153 本教程介绍 ...
- mapreduce程序编写(WordCount)
折腾了半天.终于编写成功了第一个自己的mapreduce程序,并通过打jar包的方式运行起来了. 运行环境: windows 64bit eclipse 64bit jdk6.0 64bit 一.工程 ...
- 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0
使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...
- 运行第一个MapReduce程序,WordCount
1.安装Eclipse 安装后如果无法启动重新配置Java路径(如果之前配置了Java) 2.下载安装eclipse的hadoop插件 注意版本对应,放到/uer/lib/eclipse/plugin ...
- Hadoop实战5:MapReduce编程-WordCount统计单词个数-eclipse-java-windows环境
Hadoop研发在java环境的拓展 一 背景 由于一直使用hadoop streaming形式编写mapreduce程序,所以目前的hadoop程序局限于python语言.下面为了拓展java语言研 ...
随机推荐
- IO流入门-第十章-DataInputStream_DataOutputStream
DataInputStream和DataOutputStream基本用法和方法示例 /* java.io.DataOutputStream 数据字节输出流,带着类型写入 可以将内存中的“int i = ...
- 第17章—前端分页(Bootstrap-Table)
spring boot 系列学习记录:http://www.cnblogs.com/jinxiaohang/p/8111057.html 码云源码地址:https://gitee.com/jinxia ...
- 转!!DNS域名解析使用的是TCP协议还是UDP协议?
原文地址:https://segmentfault.com/a/1190000006100959 DNS同时占用UDP和TCP端口53是公认的,这种单个应用协议同时使用两种传输协议的情况在TCP/IP ...
- gophercloud openstack networking 源码分析
1.network 部分 // Package networks contains functionality for working with Neutron network resources. ...
- 基于mondrian聚合表的R计算olap开发
原文出处:http://www.cnblogs.com/qiaoyihang/p/7348328.html 最近在做基于Mondrian的olap开发,总结一下! 一. schema构建 1.思考:我 ...
- SCSS入门
1. CSS预处理器 定义了一种新的专门的编程语言,编译后成正常的CSS文件.为CSS增加一些编程的特性,无需考虑浏览器的兼容问题,让CSS更加简洁,适应性更强,可读性更佳,更易于代码的维护等诸多好处 ...
- CSS 之怀疑自己的审美 1 (Day49)
CSS概述 CSS是Cascading Style Sheets的简称,中文称为层叠样式表,用来控制网页数据的表现,可以使网页的表现与数据内容分离. 一.css的四种引入方式 1.行内式 行内式是在标 ...
- CNN学习笔记:目标函数
CNN学习笔记:目标函数 分类任务中的目标函数 目标函数,亦称损失函数或代价函数,是整个网络模型的指挥棒,通过样本的预测结果与真实标记产生的误差来反向传播指导网络参数学习和表示学习. 假设某分类任务共 ...
- PL/SQL编程—游标
一.游标的相关概念: 定义: 游标它是一个服务器端的存储区,这个区域提供给用户使用,在这个区域里 存储的是用户通过一个查询语句得到的结果集,用户通过控制这个游标区域当中 的指针 来提取游标中的数据,然 ...
- 144. Binary Tree Preorder Traversal (二叉树前序遍历)
Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...