0-1. 简介

0-2. 内部结构分析

0-3. LinkedList源码分析

  0-3-1. 构造方法

  0-3-2. 添加add方法

  0-3-3. 根据位置取数据的方法

  0-3-4. 根据对象得到索引的方法

  0-3-5. 检查链表是否包含某对象的方法

  0-3-6. 删除removepop方法

0-4. LinkedList类常用方法

简介

LinkedList是一个实现了List接口和Deque接口的双端链表。

LinkedList底层的链表结构使它支持高效的插入和删除操作,另外它实现了Deque接口,使得LinkedList类也具有队列的特性;

LinkedList不是线程安全的,如果想使LinkedList变成线程安全的,可以调用静态类Collections类中的synchronizedList方法:

List list=Collections.synchronizedList(new LinkedList(...));

内部结构分析

如下图所示:



看完了图之后,我们再看LinkedList类中的一个内部私有类Node就很好理解了:

private static class Node<E> {
E item;//节点值
Node<E> next;//前驱节点
Node<E> prev;//后继节点 Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}

这个类就代表双端链表的节点Node。这个类有三个属性,分别是前驱节点,本节点的值,后继结点。

LinkedList源码分析

构造方法

空构造方法:

    public LinkedList() {
}

用已有的集合创建链表的构造方法:

    public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}

添加(add)方法

add(E e) 方法:将元素添加到链表尾部

public boolean add(E e) {
linkLast(e);//这里就只调用了这一个方法
return true;
}
   /**
* 链接使e作为最后一个元素。
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;//新建节点
if (l == null)
first = newNode;
else
l.next = newNode;//指向后继元素也就是指向下一个元素
size++;
modCount++;
}

add(int index,E e):在指定位置添加元素

public void add(int index, E element) {
checkPositionIndex(index); //检查索引是否处于[0-size]之间 if (index == size)//添加在链表尾部
linkLast(element);
else//添加在链表中间
linkBefore(element, node(index));
}

linkBefore方法需要给定两个参数,一个插入节点的值,一个指定的node,所以我们又调用了Node(index)去找到index对应的node

addAll(Collection c ):将集合插入到链表尾部

public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}

addAll(int index, Collection c): 将集合从指定位置开始插入

public boolean addAll(int index, Collection<? extends E> c) {
//1:检查index范围是否在size之内
checkPositionIndex(index); //2:toArray()方法把集合的数据存到对象数组中
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false; //3:得到插入位置的前驱节点和后继节点
Node<E> pred, succ;
//如果插入位置为尾部,前驱节点为last,后继节点为null
if (index == size) {
succ = null;
pred = last;
}
//否则,调用node()方法得到后继节点,再得到前驱节点
else {
succ = node(index);
pred = succ.prev;
} // 4:遍历数据将数据插入
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
//创建新节点
Node<E> newNode = new Node<>(pred, e, null);
//如果插入位置在链表头部
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
} //如果插入位置在尾部,重置last节点
if (succ == null) {
last = pred;
}
//否则,将插入的链表与先前链表连接起来
else {
pred.next = succ;
succ.prev = pred;
} size += numNew;
modCount++;
return true;
}

上面可以看出addAll方法通常包括下面四个步骤:

1. 检查index范围是否在size之内

2. toArray()方法把集合的数据存到对象数组中

3. 得到插入位置的前驱和后继节点

4. 遍历数据,将数据插入到指定位置

addFirst(E e): 将元素添加到链表头部

 public void addFirst(E e) {
linkFirst(e);
}
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);//新建节点,以头节点为后继节点
first = newNode;
//如果链表为空,last节点也指向该节点
if (f == null)
last = newNode;
//否则,将头节点的前驱指针指向新节点,也就是指向前一个元素
else
f.prev = newNode;
size++;
modCount++;
}

addLast(E e): 将元素添加到链表尾部,与 add(E e) 方法一样

public void addLast(E e) {
linkLast(e);
}

根据位置取数据的方法

get(int index)::根据指定索引返回数据

public E get(int index) {
//检查index范围是否在size之内
checkElementIndex(index);
//调用Node(index)去找到index对应的node然后返回它的值
return node(index).item;
}

获取头节点(index=0)数据方法:

public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
public E element() {
return getFirst();
}
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
} public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}

区别:

getFirst(),element(),peek(),peekFirst()

这四个获取头结点方法的区别在于对链表为空时的处理,是抛出异常还是返回null,其中getFirst()element() 方法将会在链表为空时,抛出异常

element()方法的内部就是使用getFirst()实现的。它们会在链表为空时,抛出NoSuchElementException

获取尾节点(index=-1)数据方法:

 public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}

两者区别:

getLast() 方法在链表为空时,会抛出NoSuchElementException,而peekLast() 则不会,只是会返回 null

根据对象得到索引的方法

int indexOf(Object o): 从头遍历找

public int indexOf(Object o) {
int index = 0;
if (o == null) {
//从头遍历
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
//从头遍历
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}

int lastIndexOf(Object o): 从尾遍历找

public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
//从尾遍历
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
//从尾遍历
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}

检查链表是否包含某对象的方法:

contains(Object o): 检查对象o是否存在于链表中

 public boolean contains(Object o) {
return indexOf(o) != -1;
}

删除(remove/pop)方法

remove() ,removeFirst(),pop(): 删除头节点

public E pop() {
return removeFirst();
}
public E remove() {
return removeFirst();
}
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}

removeLast(),pollLast(): 删除尾节点

public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}

区别: removeLast()在链表为空时将抛出NoSuchElementException,而pollLast()方法返回null。

remove(Object o): 删除指定元素

public boolean remove(Object o) {
//如果删除对象为null
if (o == null) {
//从头开始遍历
for (Node<E> x = first; x != null; x = x.next) {
//找到元素
if (x.item == null) {
//从链表中移除找到的元素
unlink(x);
return true;
}
}
} else {
//从头开始遍历
for (Node<E> x = first; x != null; x = x.next) {
//找到元素
if (o.equals(x.item)) {
//从链表中移除找到的元素
unlink(x);
return true;
}
}
}
return false;
}

当删除指定对象时,只需调用remove(Object o)即可,不过该方法一次只会删除一个匹配的对象,如果删除了匹配对象,返回true,否则false。

unlink(Node x) 方法:

E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;//得到后继节点
final Node<E> prev = x.prev;//得到前驱节点 //删除前驱指针
if (prev == null) {
first = next;如果删除的节点是头节点,令头节点指向该节点的后继节点
} else {
prev.next = next;//将前驱节点的后继节点指向后继节点
x.prev = null;
} //删除后继指针
if (next == null) {
last = prev;//如果删除的节点是尾节点,令尾节点指向该节点的前驱节点
} else {
next.prev = prev;
x.next = null;
} x.item = null;
size--;
modCount++;
return element;
}

remove(int index):删除指定位置的元素

public E remove(int index) {
//检查index范围
checkElementIndex(index);
//将节点删除
return unlink(node(index));
}

LinkedList类常用方法测试:

package list;

import java.util.Iterator;
import java.util.LinkedList; public class LinkedListDemo {
public static void main(String[] srgs) {
//创建存放int类型的linkedList
LinkedList<Integer> linkedList = new LinkedList<>();
/************************** linkedList的基本操作 ************************/
linkedList.addFirst(0); // 添加元素到列表开头
linkedList.add(1); // 在列表结尾添加元素
linkedList.add(2, 2); // 在指定位置添加元素
linkedList.addLast(3); // 添加元素到列表结尾 System.out.println("LinkedList(直接输出的): " + linkedList); System.out.println("getFirst()获得第一个元素: " + linkedList.getFirst()); // 返回此列表的第一个元素
System.out.println("getLast()获得第最后一个元素: " + linkedList.getLast()); // 返回此列表的最后一个元素
System.out.println("removeFirst()删除第一个元素并返回: " + linkedList.removeFirst()); // 移除并返回此列表的第一个元素
System.out.println("removeLast()删除最后一个元素并返回: " + linkedList.removeLast()); // 移除并返回此列表的最后一个元素
System.out.println("After remove:" + linkedList);
System.out.println("contains()方法判断列表是否包含1这个元素:" + linkedList.contains(1)); // 判断此列表包含指定元素,如果是,则返回true
System.out.println("该linkedList的大小 : " + linkedList.size()); // 返回此列表的元素个数 /************************** 位置访问操作 ************************/
System.out.println("-----------------------------------------");
linkedList.set(1, 3); // 将此列表中指定位置的元素替换为指定的元素
System.out.println("After set(1, 3):" + linkedList);
System.out.println("get(1)获得指定位置(这里为1)的元素: " + linkedList.get(1)); // 返回此列表中指定位置处的元素 /************************** Search操作 ************************/
System.out.println("-----------------------------------------");
linkedList.add(3);
System.out.println("indexOf(3): " + linkedList.indexOf(3)); // 返回此列表中首次出现的指定元素的索引
System.out.println("lastIndexOf(3): " + linkedList.lastIndexOf(3));// 返回此列表中最后出现的指定元素的索引 /************************** Queue操作 ************************/
System.out.println("-----------------------------------------");
System.out.println("peek(): " + linkedList.peek()); // 获取但不移除此列表的头
System.out.println("element(): " + linkedList.element()); // 获取但不移除此列表的头
linkedList.poll(); // 获取并移除此列表的头
System.out.println("After poll():" + linkedList);
linkedList.remove();
System.out.println("After remove():" + linkedList); // 获取并移除此列表的头
linkedList.offer(4);
System.out.println("After offer(4):" + linkedList); // 将指定元素添加到此列表的末尾 /************************** Deque操作 ************************/
System.out.println("-----------------------------------------");
linkedList.offerFirst(2); // 在此列表的开头插入指定的元素
System.out.println("After offerFirst(2):" + linkedList);
linkedList.offerLast(5); // 在此列表末尾插入指定的元素
System.out.println("After offerLast(5):" + linkedList);
System.out.println("peekFirst(): " + linkedList.peekFirst()); // 获取但不移除此列表的第一个元素
System.out.println("peekLast(): " + linkedList.peekLast()); // 获取但不移除此列表的第一个元素
linkedList.pollFirst(); // 获取并移除此列表的第一个元素
System.out.println("After pollFirst():" + linkedList);
linkedList.pollLast(); // 获取并移除此列表的最后一个元素
System.out.println("After pollLast():" + linkedList);
linkedList.push(2); // 将元素推入此列表所表示的堆栈(插入到列表的头)
System.out.println("After push(2):" + linkedList);
linkedList.pop(); // 从此列表所表示的堆栈处弹出一个元素(获取并移除列表第一个元素)
System.out.println("After pop():" + linkedList);
linkedList.add(3);
linkedList.removeFirstOccurrence(3); // 从此列表中移除第一次出现的指定元素(从头部到尾部遍历列表)
System.out.println("After removeFirstOccurrence(3):" + linkedList);
linkedList.removeLastOccurrence(3); // 从此列表中移除最后一次出现的指定元素(从头部到尾部遍历列表)
System.out.println("After removeFirstOccurrence(3):" + linkedList); /************************** 遍历操作 ************************/
System.out.println("-----------------------------------------");
linkedList.clear();
for (int i = 0; i < 100000; i++) {
linkedList.add(i);
}
// 迭代器遍历
long start = System.currentTimeMillis();
Iterator<Integer> iterator = linkedList.iterator();
while (iterator.hasNext()) {
iterator.next();
}
long end = System.currentTimeMillis();
System.out.println("Iterator:" + (end - start) + " ms"); // 顺序遍历(随机遍历)
start = System.currentTimeMillis();
for (int i = 0; i < linkedList.size(); i++) {
linkedList.get(i);
}
end = System.currentTimeMillis();
System.out.println("for:" + (end - start) + " ms"); // 另一种for循环遍历
start = System.currentTimeMillis();
for (Integer i : linkedList)
;
end = System.currentTimeMillis();
System.out.println("for2:" + (end - start) + " ms"); // 通过pollFirst()或pollLast()来遍历LinkedList
LinkedList<Integer> temp1 = new LinkedList<>();
temp1.addAll(linkedList);
start = System.currentTimeMillis();
while (temp1.size() != 0) {
temp1.pollFirst();
}
end = System.currentTimeMillis();
System.out.println("pollFirst()或pollLast():" + (end - start) + " ms"); // 通过removeFirst()或removeLast()来遍历LinkedList
LinkedList<Integer> temp2 = new LinkedList<>();
temp2.addAll(linkedList);
start = System.currentTimeMillis();
while (temp2.size() != 0) {
temp2.removeFirst();
}
end = System.currentTimeMillis();
System.out.println("removeFirst()或removeLast():" + (end - start) + " ms");
}
}

欢迎关注我的微信公众号(分享各种Java学习资源,面试题,以及企业级Java实战项目回复关键字免费领取):

集合框架源码学习之LinkedList的更多相关文章

  1. 集合框架源码学习之HashMap(JDK1.8)

    目录: 0-1. 简介 0-2. 内部结构分析 0-2-1. JDK18之前 0-2-2. JDK18之后 0-3. LinkedList源码分析 0-3-1. 构造方法 0-3-2. put方法 0 ...

  2. 集合框架源码学习之ArrayList

    目录: 0-0-1. 前言 0-0-2. 集合框架知识回顾 0-0-3. ArrayList简介 0-0-4. ArrayList核心源码 0-0-5. ArrayList源码剖析 0-0-6. Ar ...

  3. 【java集合框架源码剖析系列】java源码剖析之LinkedList

    注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本. 在实际项目中LinkedList也是使用频率非常高的一种集合,本博客将从源码角度带领大家学习关于LinkedList的知识. ...

  4. 【java集合框架源码剖析系列】java源码剖析之ArrayList

    注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本. 本博客将从源码角度带领大家学习关于ArrayList的知识. 一ArrayList类的定义: public class Arr ...

  5. 【java集合框架源码剖析系列】java源码剖析之TreeSet

    本博客将从源码的角度带领大家学习TreeSet相关的知识. 一TreeSet类的定义: public class TreeSet<E> extends AbstractSet<E&g ...

  6. 【java集合框架源码剖析系列】java源码剖析之HashSet

    注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本.本博客将从源码角度带领大家学习关于HashSet的知识. 一HashSet的定义: public class HashSet&l ...

  7. 【java集合框架源码剖析系列】java源码剖析之TreeMap

    注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本.本博客将从源码角度带领大家学习关于TreeMap的知识. 一TreeMap的定义: public class TreeMap&l ...

  8. 【java集合框架源码剖析系列】java源码剖析之HashMap

    前言:之所以打算写java集合框架源码剖析系列博客是因为自己反思了一下阿里内推一面的失败(估计没过,因为写此博客已距阿里巴巴一面一个星期),当时面试完之后感觉自己回答的挺好的,而且据面试官最后说的这几 ...

  9. ABP框架源码学习之修改默认数据库表前缀或表名称

    ABP框架源码学习之修改默认数据库表前缀或表名称 1,源码 namespace Abp.Zero.EntityFramework { /// <summary> /// Extension ...

随机推荐

  1. AutoResetEvent的基本用法

    The following example uses an AutoResetEvent to synchronize the activities of two threads.The first ...

  2. dedecms给原模型添加新字段

    1.进入dedecms后台 2.点击核心=>频道模型=>内容模型管理(在这里可以看到dedecms预设的模型设置) 3.选中我们需要的模型,点击更改,跳入以下页面 4.点击字段管理(可以看 ...

  3. Binding自动侦听

    WPF的强大之一就是数据绑定,Binding是数据桥梁,它的两端是分别是源(Source)和目标(Target),一个简单的类的属性值发生变化,会自动反映在UI界面上,这个属性就是Binding的Pa ...

  4. c# 日志记录 行号

    Console.WriteLine(ex.Message); //通过如下代码来记录异常详细的信息 ); Console.WriteLine("文件名:{0},行号:{1},列号:{2}&q ...

  5. 2018牛客多校第五场 E.room

    题意: 一共有n个宿舍,每个宿舍有4个人.给出第一年的人员分布和第二年的人员分布,问至少有多少人需要移动. 题解: 对于第一年的每个宿舍,向今年的每种组合连边.流量为1,费用为(4 - 组合中已在该宿 ...

  6. POJ3498:March of the Penguins——题解

    最近的题解的故事背景割. 题目: 描述 在靠近南极的某处,一些企鹅站在许多漂浮的冰块上.由于企鹅是群居动物,所以它们想要聚集到一起,在同一个冰块上.企鹅们不想把自己的身体弄湿,所以它们在冰块之间跳跃, ...

  7. CodeForces - 50A Domino piling (贪心+递归)

    CodeForces - 50A Domino piling (贪心+递归) 题意分析 奇数*偶数=偶数,如果两个都为奇数,最小的奇数-1递归求解,知道两个数都为1,返回0. 代码 #include ...

  8. 关于EK Dicnic

    笔记--最大流  $EK$ $Dinic$ $EK$: 运用反向边可以给当前图一次反悔的机会,就是其实现在的增广路并不是最优的,然后就$bfs$找增广路即可 $Dicnic$: 我们发现其实每一次先$ ...

  9. GoLand安装配置

    目录 下载 安装 破解 运行 参考网址 GoLand配置 下载 1 下载路径:https://pan.baidu.com/s/1JJ-Oxx9NkEK-PrwcvLys7Q,提取码:o0e5 2 下载 ...

  10. Linux之异步通知20160702

    异步通知,主要说的是使用信号的方式,同时使用信号也是实现进程之间通信的一种方式. 多的不说,我们直接看代码: 首先应用程序的: #include <sys/types.h> #includ ...