【51NOD-0】1137 矩阵乘法
【算法】简单数学
【题解】
对于A*B=C
C中第i行第j列的数字由A中第i行和B中的j列的数字各自相乘后相加得到。
所以两个矩阵能相乘要求A的列数等于B的行数,复杂度为O(n3)。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
int n,a[maxn][maxn],b[maxn][maxn],c[maxn][maxn];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&b[i][j]);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
c[i][j]=;
for(int k=;k<=n;k++)c[i][j]+=a[i][k]*b[k][j];
printf("%d ",c[i][j]);
}
printf("\n");
}
return ;
}
【51NOD-0】1137 矩阵乘法的更多相关文章
- 51nod 1137.矩阵乘法-矩阵乘法
1137 矩阵乘法 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个N * N的矩阵M1和M2,输出2个矩阵相乘后的结果. Input 第1行:1个数N, ...
- 51nod 1137 矩阵乘法【矩阵】
1137 矩阵乘法 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个N * N的矩阵M1和M2,输出2个矩阵相乘后的结果. Input 第1行 ...
- 51nod 1137 矩阵乘法
基本的矩阵乘法 中间for(int j=0;i<n;i++) //这里写错了 应该是j<n 晚上果然 效率不行 等会早点儿睡 //矩阵乘法 就是 两个矩阵 第一个矩阵的列 等与 第 ...
- 【C++小白成长撸】--矩阵乘法程序
矩阵乘法是大学矩阵课程中,相比矩阵加减法比较困难的部分. 矩阵乘法的原理: 矩阵乘法在代码中实现 得到目标矩阵的一个元素,涉及两个求和符号,一个求和符号一个for循环,两个求和符号两个for循环,再加 ...
- 51nod 1462 树据结构 | 树链剖分 矩阵乘法
题目链接 51nod 1462 题目描述 给一颗以1为根的树. 每个点有两个权值:vi, ti,一开始全部是零. Q次操作: 读入o, u, d o = 1 对u到根上所有点的vi += d o = ...
- 51nod 1583 犯罪计划——矩阵乘法优化dp
文泽想在埃及做案n次,并且想在最后不用得到惩罚.案件的被分成几种类型.比如说,案件A,当案件A被重复犯两次时,案件A将被认为不是犯罪案件,因此犯案人不用得到惩罚.也就是说,案件A被犯偶数次时,犯案人将 ...
- 51nod1836-战忽局的手段【期望dp,矩阵乘法】
正题 题目连接:http://www.51nod.com/Challenge/Problem.html#problemId=1836 题目大意 \(n\)个点\(m\)次随机选择一个点标记(可以重复) ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- 算法与数据结构5.1 Just Sort
★实验任务 给定两个序列 a b,序列 a 原先是一个单调递增的正数序列,但是由于某些 原因,使得序列乱序了,并且一些数丢失了(用 0 表示).经过数据恢复后,找 到了正数序列 b ,且序列 a 中 ...
- 内存转储文件调试系统崩溃bug
百度百科:内存转储文件 内存转储是用于系统崩溃时,将内存中的数据转储保存在转储文件中,供给有关人员进行排错分析用途.而它所保存生成的文件就叫做内存转储文件. 内存转储文件也被称作虚拟内存,它是用硬盘里 ...
- spring框架(1)— 依赖注入
依赖注入 spring核心容器就是一个超级大工厂,所以的对象(数据源.hibernate SessionFactory等基础性资源)都会被当做spring核心容器的管理对象——spring把容器中的一 ...
- lintcode-6-合并排序数组
合并排序数组 合并两个排序的整数数组A和B变成一个新的数组. 样例 给出A=[1,2,3,4],B=[2,4,5,6],返回 [1,2,2,3,4,4,5,6] 挑战 你能否优化你的算法,如果其中一个 ...
- TCP系列21—重传—11、TLP
一.介绍 Tail Loss Probe (TLP)是同样是一个发送端算法,主要目的是使用快速重传取代RTO超时重传来处理尾包丢失场景.在一些WEB业务中,如果TCP尾包丢失,如果依靠RTO超时进行重 ...
- TCP系列07—连接管理—6、TCP连接管理的状态机
经过前面对TCP连接管理的介绍,我们本小节通过TCP连接管理的状态机来总结一下看看TCP连接的状态变化 一.TCP状态机整体状态转换图(截取自第二版TCPIP详解) 二.TCP连接建立 ...
- 大型网站架构演化(八)——使用NoSQL和搜索引擎
随着网站业务越来越复杂,对数据存储和检索的需求也越来越复杂,网站需要采用一些非关系数据库技术如NoSQL和非数据库查询技术如搜索引擎,如图. NoSQL和搜索引擎都是源自互联网的技术手段,对可伸缩的分 ...
- vue服务端渲染简单入门实例
想到要学习vue-ssr的同学,自不必多说,一定是熟悉了vue,并且多多少少做过几个项目.然后学习vue服务端渲染无非解决首屏渲染的白屏问题以及SEO友好. 话不多说,笔者也是研究多日才搞明白这个服务 ...
- BZOJ3139/BZOJ1306 HNOI2013比赛/CQOI2009循环赛(搜索)
搜索好难啊. 1.对于每个分数集合记忆化. 2.某人得分超过总分,剪枝. 3.某人之后全赢也无法达到总分,剪枝. 4.每有一场比赛分出胜负总分会多三分,而平局则会多两分.某人的分出胜负场次或平局场次超 ...
- [洛谷P3979]遥远的国度
题目大意:有一棵$n$个点的树,每个点有一个点权,有三种操作: $1\;x:$把根变成$x$ $2\;u\;v\;x:$把路径$u->v$上的点权改为$x$ $3\;x:$询问以$x$为根的子树 ...