Read problems statements in Mandarin Chineseand Russian.

Problem Statement

Chef has a undirected graph G. This graph consists of N vertices and M edges. Each vertex of the graph has an unique index from 1 to N, also each edge of the graph has an unique index from 1 to M.

Also Chef has Q pairs of integers: LiRi (1 ≤ Li ≤ Ri ≤ M). For each pair LiRi, Chef wants to know: how many connected components will contain graph G if Chef erase all the edges from the graph, except the edges with indies X, where Li ≤ X ≤ Ri. Please, help Chef with these queries.

Input

The first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows.
The first line of each test case contains three integers NMQ. Each of the next M lines contains a pair of integers ViUi - the current edge of graph G. Each of the next Q lines contains a pair of integers LiRi - the current query.

Output

For each query of each test case print the required number of connected components.

Constraints

  • 1 ≤ T ≤ 1000.
  • 1 ≤ NMQ ≤ 200000.
  • 1 ≤ UiVi ≤ N.
  • 1 ≤ Li ≤ Ri ≤ M.
  • Sum of all values of N for test cases is not greater than 200000. Sum of all values of M for test cases is not greater than 200000. Sum of all values of Q for test cases is not greater than 200000.
  • Graph G can contain self-loops and multiple edges.

Example

Input:
2
3 5 4
1 3
1 2
2 1
3 2
2 2
2 3
1 5
5 5
1 2
1 1 1
1 1
1 1
Output:
2
1
3
1
1

破题坑了一晚上

题目大意?见上面超链接的中文题面。

树 LCT 动态维护生成树

将所有询问按右端点递增顺序排序,从1到m依次加边。

用LCT维护当前的生成树,生成树中保留的是编号尽量大的边。

同时用线段树维护生成树中保留了哪些边(权值线段树,存编号)。

查询时,在线段树上查询$[L,R]$范围内有多少条边,若查询结果为$ x $,则连通块数为$n-x$

注意有自环和重边,这使得维护生成树的时候不能一律删编号最靠前的边,而要先查询生成树中有没有重边。

细节蛮多的。

注意多组数据,初始化结点的时候要初始化到n+m

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int INF=0x3f3f3f3f;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int x,y;
}e[mxn];
struct query{
int L,R;
int id;
bool operator < (const query &b)const{
return R<b.R;
}
}q[mxn];
int ans[mxn];
//
struct SGT{
int smm[mxn<<];
#define ls rt<<1
#define rs rt<<1|1
void clear(int ed){
ed=ed<<;
for(register int i=;i<=ed;i++)smm[i]=;
}
void pushup(int rt){smm[rt]=smm[ls]+smm[rs];return;}
void update(int p,int v,int l,int r,int rt){
if(l==r){
smm[rt]+=v;
return;
}
int mid=(l+r)>>;
if(p<=mid)update(p,v,l,mid,ls);
else update(p,v,mid+,r,rs);
pushup(rt);
return;
}
int query(int L,int R,int l,int r,int rt){
if(L<=l && r<=R){
return smm[rt];
}
int mid=(l+r)>>;
if(R<=mid)return query(L,R,l,mid,ls);
if(L>mid)return query(L,R,mid+,r,rs);
return query(L,R,l,mid,ls)+query(L,R,mid+,r,rs);
}
#undef ls
#undef rs
}SG;
int n,m,Q;
//
struct node{
int ch[],fa;
int val,mn,minpos;
bool rev;
}t[mxn];
int cnt=;
void rever(int x){
int &lc=t[x].ch[],&rc=t[x].ch[];
swap(lc,rc);
t[lc].rev^=;t[rc].rev^=;
return;
}
void PD(int x){
if(t[x].rev){
rever(x);
t[x].rev=;
}
return;
}
void pushup(int x){
int lc=t[x].ch[],rc=t[x].ch[];
t[x].mn=t[x].val;t[x].minpos=x;
if(t[lc].mn<t[x].mn){
t[x].mn=t[lc].mn; t[x].minpos=t[lc].minpos;
}
if(t[rc].mn<t[x].mn){
t[x].mn=t[rc].mn; t[x].minpos=t[rc].minpos;
}
return;
}
inline bool isroot(int x){
return (t[t[x].fa].ch[]^x)&&(t[t[x].fa].ch[]^x);
}
void rotate(int x){
int y=t[x].fa,z=t[y].fa,lc,rc;
if(t[y].ch[]==x)lc=;else lc=;rc=lc^;
if(!isroot(y)){
t[z].ch[t[z].ch[]==y]=x;
}
t[x].fa=z;t[y].fa=x;
t[t[x].ch[rc]].fa=y;
t[y].ch[lc]=t[x].ch[rc];
t[x].ch[rc]=y;
pushup(y);
return;
}
int st[mxn],top=;
void Splay(int x){
st[top=]=x;
for(int i=x;t[i].fa;i=t[i].fa){
st[++top]=t[i].fa;
}
while(top)PD(st[top--]);
while(!isroot(x)){
int y=t[x].fa,z=t[y].fa;
if(!isroot(y)){
if((t[y].ch[]==x)^(t[z].ch[]==y))rotate(x);
else rotate(y);
}
rotate(x);
}
pushup(x);
return;
}
//
void access(int x){
for(int y=;x;x=t[x].fa){
Splay(x);
t[x].ch[]=y;
pushup(x);
y=x;
}
return;
}
int find(int x){
access(x);Splay(x);
while(t[x].ch[]){
x=t[x].ch[];
}
return x;
}
void mkroot(int x){
access(x);Splay(x);
t[x].rev^=;
return;
}
void link(int x,int y){
mkroot(x); t[x].fa=y;
return;
}
void cut(int x,int y){
mkroot(x);
access(y);Splay(y);
if(t[y].ch[]==x){t[x].fa=;t[y].ch[]=;}
pushup(y);
return;
}
//
void solve(){
int hd=;
cnt=n;
for(int i=;i<=m;i++){//按序加边
int x=e[i].x,y=e[i].y;
if(x!=y && find(x)==find(y)){
bool flag=;
mkroot(x);access(y);Splay(y);
//
/* printf("-----\n");
for(int j=1;j<=cnt;j++){
printf("#%d: lc:%d rc:%d fa:%d\n",j,t[j].ch[0],t[j].ch[1],t[j].fa);
}
printf("-----\n");*/
//
int res=t[y].ch[];
while(t[res].ch[])res=t[res].ch[];
res=res-n;
if(res> && e[res].x==x && e[res].y==y){
flag=;
cut(x,res+n);
cut(y,res+n);
SG.update(res,-,,m,);
}
//
if(!flag){
mkroot(x);access(y);Splay(y);
int tar=t[y].minpos;
cut(e[tar-n].x,tar);
cut(e[tar-n].y,tar);
SG.update(tar-n,-,,m,);
}
}
++cnt;
if(x!=y){
t[cnt].val=t[cnt].mn=i;
t[cnt].minpos=cnt;
link(x,cnt);
link(cnt,y);
SG.update(i,,,m,);
}
while(hd<=Q && q[hd].R<=i){
if(q[hd].R==i){
ans[q[hd].id]=n-SG.query(q[hd].L,q[hd].R,,m,);
}
hd++;
}
}
return;
}
void init(int n,int m){
int ed=n+m;
t[].minpos=;t[].mn=INF;
for(register int x=;x<=ed;x++){
t[x].ch[]=t[x].ch[]=t[x].fa=;
t[x].minpos=;t[x].mn=INF;
t[x].val=INF;
t[x].rev=;
}
SG.clear(ed);
return;
}
int main(){
// freopen("in.txt","r",stdin);
int i;
int T=read();
while(T--){
n=read();m=read();Q=read();
init(n,m);
for(i=;i<=m;i++){
e[i].x=read();e[i].y=read();
if(e[i].x>e[i].y)swap(e[i].x,e[i].y);
}
for(i=;i<=Q;i++){
q[i].L=read();q[i].R=read();
q[i].id=i;
}
sort(q+,q+Q+);
solve();
for(i=;i<=Q;i++){
printf("%d\n",ans[i]);
}
}
return ;
}

[CodeChef - GERALD07 ] Chef and Graph Queries的更多相关文章

  1. [bzoj3514][CodeChef GERALD07] Chef ans Graph Queries [LCT+主席树]

    题面 bzoj上的强制在线版本 思路 首先可以确定,这类联通块相关的询问问题,都可以$LCT$+可持久化记录解决 用LCT维护生成树作为算法基础 具体而言,从前往后按照边的编号顺序扫一遍边 如果这条边 ...

  2. BZOJ3514 / Codechef GERALD07 Chef and Graph Queries LCT、主席树

    传送门--BZOJ 传送门--VJ 考虑使用LCT维护时间最大生成树,那么对于第\(i\)条边,其加入时可能会删去一条边.记\(pre_i\)表示删去的边的编号,如果不存在则\(pre_i = 0\) ...

  3. 【CodeChef】Chef and Graph Queries

    Portal --> CC Chef and Graph Queries Solution 快乐数据结构题(然而好像有十分优秀的莫队+可撤销并查集搞法qwq) 首先考虑一种方式来方便一点地..计 ...

  4. [BZOJ 3514]Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES)

    [BZOJ3514] Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES) 题意 \(N\) 个点 \(M\) 条边的无向图,\(K\) 次询问保 ...

  5. Chef and Graph Queries CodeChef - GERALD07

    https://vjudge.net/problem/CodeChef-GERALD07 可以用莫队+带撤销并查集做 错误记录: 1.调试时数组开小了,忘了改大就交了 2.88行和91行少了备份num ...

  6. Code Chef - Chef and Graph Queries

    传送门 题目大意 给定一个$n$个点$m$条边的无向图$(n,m\leq 200000)$. 有$q$每次询问$(q\leq 200000)$,每次给定一个区间$L,R$,求仅保留编号$\in[L,R ...

  7. [Codechef CHSTR] Chef and String - 后缀数组

    [Codechef CHSTR] Chef and String Description 每次询问 \(S\) 的子串中,选出 \(k\) 个相同子串的方案有多少种. Solution 本题要求不是很 ...

  8. Codechef FNCS Chef and Churu

    Disciption Chef has recently learnt Function and Addition. He is too exited to teach this to his fri ...

  9. 【Codechef】Chef and Bike(二维多项式插值)

    something wrong with my new blog! I can't type matrixs so I come back. qwq 题目:https://www.codechef.c ...

随机推荐

  1. .mat转成.npy文件+Python(Pytorch)压缩裁剪图片

    需求:现有数据文件V1.mat,里面包含多个数据集,现需将里面的images数据集提取出来,然后进行压缩裁剪成指定大小 V1.mat数据集目录: 1.从mat文件中提取数据(使用Python) V1. ...

  2. iOS- <项目笔记> UIApplication常见属性与方法总结

    UIApplication 1.简介 1> 整个应用程序的象征,一个应用程序就一个UIApplication对象,使用了单例设计模式 2> 通过[UIApplication sharedA ...

  3. Debian 7 amd64--TP-LINK TL-WN725N 2.0源码驱动编译安装

    租房用的是无线网络,在新安装的Debian 7 amd64使用的无线网卡型号是TP-LINK TL-WN725N 2.0,发现驱动安装还是有些问题,折腾了很久,特意在此记录一下. TL-WN725N ...

  4. iframe 随内容自适应高度

    兼容性好的 html代码: <iframe src="enterprise/enter_edit.aspx" id="mainframe" framebo ...

  5. C# 执行bat文件

    private void RunBat(string batPath) { Process pro = new Process(); FileInfo file = new FileInfo(batP ...

  6. 3ds max启动慢怎么办?

      有时候启动3ds max的时候一直卡在启动界面进不去怎么办?   在百度上搜到了下面这个解决方案,试了下还真有用:   具体就是进到这个文件夹,然后分别进入第一个和第三个文件夹删掉autodesk ...

  7. 软工网络15个人作业4-alpha阶段个人总结(201521123059 叶文柠)

    一.个人总结 (1) 类别 具体技能和面试问题 现在回答 毕业找工作时 语言 最拿手的计算机语言之一,代码量多少? 感觉自己没有最拿手的语言,而且拿手的在计算机网络这方面的,所以在软件变成这方面的代码 ...

  8. 《Effective C#》快速笔记(三)- 使用 C# 表达设计

    目录 二十一.限制类型的可见性 二十二.通过定义并实现接口替代继承 二十三.理解接口方法和虚方法的区别 二十四.用委托实现回调 二十五.用事件模式实现通知 二十六.避免返回对内部类对象的引用 二十七. ...

  9. codesandbox

    codesandbox https://codesandbox.io https://codesandbox.io/dashboard https://codesandbox.io/dashboard ...

  10. Wannafly 挑战赛16 A 取石子

    题目描述 给出四堆石子,石子数分别为a,b,c,d.规定每次只能从堆顶取走石子,问取走所有石子的方案数. 输入描述: 在一行内读入四个由空格分隔的整数a,b,c,d, 输入均为不超过500的正整数 输 ...