论文解读(VGAE)《Variational Graph Auto-Encoders》
Paper Information
Title:Variational Graph Auto-Encoders
Authors:Thomas Kipf, M. Welling
Soures:2016, ArXiv
Others:1214 Citations, 14 References
1 A latent variable model for graph-structured data
VGAE 使用了一个 GCN encoder 和 一个简单的内积 decoder ,架构如下图所示:
Definitions:We are given an undirected, unweighted graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with $N=|\mathcal{V}|$ nodes. We introduce an adjacency matrix $\mathbf{A}$ of $\mathcal{G}$ (we assume diagonal elements set to $1$ , i.e. every node is connected to itself) and its degree matrix $\mathbf{D}$ . We further introduce stochastic latent variables $\mathbf{z}_{i}$ , summarized in an $N \times F$ matrix $\mathbf{Z}$ . Node features are summarized in an $N \times D$ matrix $\mathbf{X}$ .
Inference model:使用一个两层的 GCN 推理模型
$q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})=\prod_{i=1}^{N} q\left(\mathbf{z}_{i} \mid \mathbf{X}, \mathbf{A}\right) \text { with } \quad q\left(\mathbf{z}_{i} \mid \mathbf{X}, \mathbf{A}\right)=\mathcal{N}\left(\mathbf{z}_{i} \mid \boldsymbol{\mu}_{i}, \operatorname{diag}\left(\boldsymbol{\sigma}_{i}^{2}\right)\right)$
其中:
- $\boldsymbol{\mu}=\operatorname{GCN}_{\boldsymbol{\mu}}(\mathbf{X}, \mathbf{A})$ is the matrix of mean vectors $\boldsymbol{\mu}_{i} $;
- $\log \boldsymbol{\sigma}=\mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A})$;
def encode(self, x, adj):
hidden1 = self.gc1(x, adj)
return self.gc2(hidden1, adj), self.gc3(hidden1, adj) mu, logvar = self.encode(x, adj)
GCN 的第二层分别输出 mu,log $\sigma$ 矩阵,共用第一层的参数。
这里 GCN 定义为:
$\operatorname{GCN}(\mathbf{X}, \mathbf{A})=\tilde{\mathbf{A}} \operatorname{ReLU}\left(\tilde{\mathbf{A}} \mathbf{X} \mathbf{W}_{0}\right) \mathbf{W}_{1}$
其中:
- $\mathbf{W}_{i}$ 代表着权重矩阵
- $\operatorname{GCN}_{\boldsymbol{\mu}}(\mathbf{X}, \mathbf{A})$ 和 $\mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A})$ 共享第一层的权重矩阵 $\mathbf{W}_{0} $
- $\operatorname{ReLU}(\cdot)=\max (0, \cdot)$
- $\tilde{\mathbf{A}}=\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$ 代表着 symmetrically normalized adjacency matrix
至于 $z$ 的生成:
def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu z = self.reparameterize(mu, logvar)
Generative model:我们的生成模型是由潜在变量之间的内积给出的:
$p(\mathbf{A} \mid \mathbf{Z})=\prod_{i=1}^{N} \prod_{j=1}^{N} p\left(A_{i j} \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right) \text { with } p\left(A_{i j}=1 \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right)=\sigma\left(\mathbf{z}_{i}^{\top} \mathbf{z}_{j}\right)$
其中:
- $\mathbf{A}$ 是邻接矩阵
- $\sigma(\cdot)$ 是 logistic sigmoid function.
class InnerProductDecoder(nn.Module):
"""Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid):
super(InnerProductDecoder, self).__init__()
self.dropout = dropout
self.act = act def forward(self, z):
z = F.dropout(z, self.dropout, training=self.training)
adj = self.act(torch.mm(z, z.t()))
return adj self.dc = InnerProductDecoder(dropout, act=lambda x: x) adj = self.dc(z)
Learning:优化变分下界 $\mathcal{L}$ 的参数 $W_i$ :
$\mathcal{L}=\mathbb{E}_{q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})}[\log p(\mathbf{A} \mid \mathbf{Z})]-\mathrm{KL}[q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A}) \| p(\mathbf{Z})]$
其中:
- $\operatorname{KL}[q(\cdot) \| p(\cdot)]$ 代表着 $q(\cdot)$ 和 $p(\cdot)$ 之间的 KL散度。
- 高斯先验 $p(\mathbf{Z})=\prod_{i} p\left(\mathbf{z}_{\mathbf{i}}\right)=\prod_{i} \mathcal{N}\left(\mathbf{z}_{i} \mid 0, \mathbf{I}\right)$
Non-probabilistic graph auto-encoder (GAE) model
计算表示向量 $Z$ 和重建的邻接矩阵 $\hat{\mathbf{A}}$
$\hat{\mathbf{A}}=\sigma\left(\mathbf{Z Z}^{\top}\right), \text { with } \quad \mathbf{Z}=\operatorname{GCN}(\mathbf{X}, \mathbf{A})$
2 Experiments on link prediction
引文网络中链接预测任务的结果如 Table 1 所示。
GAE* and VGAE* denote experiments without using input features, GAE and VGAE use input features.
论文解读(VGAE)《Variational Graph Auto-Encoders》的更多相关文章
- 论文解读《Bilinear Graph Neural Network with Neighbor Interactions》
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiang ...
- 论文解读《Cauchy Graph Embedding》
Paper Information Title:Cauchy Graph EmbeddingAuthors:Dijun Luo, C. Ding, F. Nie, Heng HuangSources: ...
- 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...
- 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...
- 论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, ...
- 论文解读(LG2AR)《Learning Graph Augmentations to Learn Graph Representations》
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein ...
- 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...
- 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...
- 论文解读(DGI)《DEEP GRAPH INFOMAX》
论文标题:DEEP GRAPH INFOMAX 论文方向:图像领域 论文来源:2019 ICLR 论文链接:https://arxiv.org/abs/1809.10341 论文代码:https:// ...
随机推荐
- HTTP缓存协议实战
一.什么是缓存 缓存,又称作Cache,我们把临时存储数据的地方叫做缓存池,缓存池里面放的数据就叫做缓存.当用户需要使用这些数据,首先在缓存中寻找,如果找到了则直接使用.如果找不到,则再去其他数据源中 ...
- Spring-BeanFactory体系介绍
1 BeanFactory介绍 BeanFactory是Spring中的根容器接口,所有的容器都从从它继承而来,ApplicationContext中对于BeanDefinition的注册,bean实 ...
- PHP宝典面试笔试题目
PHP宝典面试笔试题目 来自<PHP程序员面试笔试宝典>,涵盖了近三年了各大型企业常考的PHP面试题,针对面试题提取出来各种面试知识也涵盖在了本书. PHP题目 [真题68] ( ) ...
- v79.01 鸿蒙内核源码分析(用户态锁篇) | 如何使用快锁Futex(上) | 百篇博客分析OpenHarmony源码
百篇博客分析|本篇为:(用户态锁篇) | 如何使用快锁Futex(上) 进程通讯相关篇为: v26.08 鸿蒙内核源码分析(自旋锁) | 当立贞节牌坊的好同志 v27.05 鸿蒙内核源码分析(互斥锁) ...
- TCP/IP详解 读书笔记(一):概述
分层 网络协议通常分不同层次进行开发,每一层负责不同的职责,一个协议簇指的是一组不同层次上的多个协议的组合. TCP/IP通常被认为是一个四层协议系统: 链路层:主要是处理与电缆或其他传输媒介的物理接 ...
- tip2:Linux系统相关命令使用
好记忆不如烂笔头,很多东西不常用突然要用就是记得相关的命令但是具体就不确定了,本文记录个人不常用同时偶尔用到但不确定或者记不住的内容. 一.用户管理 这组个人使用频率不高,知道同时记不住具体涉及的系统 ...
- mysq数据库相信介绍大纲!!!!!!
什么是数据库? 数据库(Database)是按照数据结构来安排.存储和办理数据的仓库. 每个数据库都有一个或多个不同的 API 用于创立,访问,办理,搜索和仿制所保存的数据. 我们也能够将数据存储在文 ...
- [VM trunk ports]opensatck VM 单网卡,多VLAN配置
描述 需求产生场景 1.用户在虚机运行 K8S ,采用 VLAN 模式组网,要求 VM 端口要支持 trunk,支持多个 VLAN 网络数据在同一虚拟网卡上传输. 2.需要动态的增删虚拟机上的网络接口 ...
- 谁说EXCEL不能处理大数据?那是你用错了工具
我是一名数据分析师,每天需要和各种各样的数据和表格打交道,是一名名副其实的"表哥",不仅需要制作和更新公司里的日报.周报和月报,有时候也要为公司的会议准备各种数据材料.由于公司的业 ...
- over the Wall
最近风头很紧,先上两个可用的谷歌镜像给各位应急. https://kfd.me/ http://gufenso.coderschool.cn/ https://github.com/gfw-break ...