题面

N

N

N 种糖果,

M

M

M 个小孩子,第

i

i

i 种糖果有

A

i

A_i

Ai​ 个,第

i

i

i 个孩子不能有超过

B

i

B_i

Bi​ 个同种类型的糖果,第

i

i

i 个孩子的糖果总数不能超过

C

i

C_i

Ci​ 。

合理分配糖果,问能分配出去的最大糖果数。

N

,

M

2

e

5

N,M\leq 2e5

N,M≤2e5 。

题解

不难想到,这就是最大流啊!

可是我们完全没法建图,更是跑不过。

那,模拟最大流?

您可以试试,不过我们这道题的正解是用最大流最小割定理

最大流等于最小割,此题最大流不好求,我们就求最小割。

一共有三类边,一类是源点连向每种糖果的边,权值为

A

i

A_i

Ai​ ,第二类是糖果和孩子之间的连边,孩子的每条入边边权都是

B

i

B_i

Bi​ ,第三类是孩子连向汇点的边,边权为

C

i

C_i

Ci​ 。

我们割掉一些边使得源点到不了汇点,可以逐个考虑。首先,糖果之间的顺序不重要,我们先把糖果按

A

i

A_i

Ai​ 从小到大排个序,割掉的边一定是个前缀。我们枚举割掉多少边,对应就已经有多少种糖果和源点不连通了,剩下的糖果,设一共有

X

X

X 种,要保证割掉第二类或第三类边后不与汇点连通。由于我们知道每种糖果与每个孩子都是存在边的,因此剩下的就是对于每个小孩子,独立地选择是割掉自己连向汇点的边(

C

i

C_i

Ci​),还是割掉从源点连过来的边(

X

B

i

X\cdot B_i

X⋅Bi​),选两者的较小值。由于决策是关于

X

X

X 单向变化的(

X

X

X 小到一定程度就不割

C

i

C_i

Ci​ 了),我们可以预处理出每个孩子决策变化时的

X

X

X 值。

时间复杂度

O

(

n

log

n

)

O(n\log n)

O(nlogn) ,基排可以

O

(

n

)

O(n)

O(n) 。

CODE

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<ctime>
#include<queue>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define LL long long
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
#define eps (1e-4)
#define BI bitset<MAXN>
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f*x;
}
void putpos(LL x) {
if(!x) return ;
putpos(x/10); putchar('0'+(x%10));
}
void putnum(LL x) {
if(!x) putchar('0');
else if(x < 0) putchar('-'),putpos(-x);
else putpos(x);
}
inline void AIput(LL x,char c) {
putnum(x); putchar(c);
}
int n,m,s,o,k;
LL a[MAXN],b[MAXN],c[MAXN];
vector<int> bu[MAXN];
int main() {
n = read();m = read();
for(int i = 1;i <= n;i ++) {
a[i] = read();
}
sort(a + 1,a + 1 + n);
LL sm = 0,sb = 0;
for(int i = 1;i <= m;i ++) b[i] = read();
for(int i = 1;i <= m;i ++) {
c[i] = read();
sm += c[i];
int le = (int)max(0ll,(LL)n - (c[i]/b[i]));
if(le <= 0) {
sm -= c[i];
sm += n*1ll*b[i];
sb += b[i];
}
else bu[le].push_back(i);
}
LL ans = sm;
for(int i = 1;i <= n;i ++) {
sm -= sb;
sm += a[i];
for(int j = 0;j < (int)bu[i].size();j ++) {
int y = bu[i][j];
sm -= c[y]; sm += (n-i) *1ll* b[y];
sb += b[y];
}
ans = min(ans,sm);
}
printf("%lld\n",ans);
return 0;
}

ARC125E - Snack (网络流)的更多相关文章

  1. plain framework 1 网络流 缓存数据详解

    网络流是什么?为什么网络流中需要存在缓存数据?为什么PF中要采用缓存网络数据的机制?带着这几个疑问,让我们好好详细的了解一下在网络数据交互中我们容易忽视以及薄弱的一块.该部分为PF现有的网络流模型,但 ...

  2. 网络流模板 NetworkFlow

    身边的小伙伴们都在愉快地刷网络流,我也来写一发模板好了. Network Flow - Maximum Flow Time Limit : 1 sec, Memory Limit : 65536 KB ...

  3. COGS732. [网络流24题] 试题库

    «问题描述:假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法.«编程任务: ...

  4. ACM/ICPC 之 有流量上下界的网络流-Dinic(可做模板)(POJ2396)

    //有流量上下界的网络流 //Time:47Ms Memory:1788K #include<iostream> #include<cstring> #include<c ...

  5. BZOJ 3144 [Hnoi2013]切糕 ——网络流

    [题目分析] 网络流好题! 从割的方面来考虑问题往往会得到简化. 当割掉i,j,k时,必定附近的要割在k-D到k+D上. 所以只需要建两条inf的边来强制,如果割不掉强制范围内的时候,原来的边一定会换 ...

  6. bzoj3572又TM是网络流

    = =我承认我写网络流写疯了 = =我承认前面几篇博文都是扯淡,我写的是垃圾dinic(根本不叫dinic) = =我承认这道题我调了半天 = =我承认我这道题一开始是T的,后来换上真正的dinic才 ...

  7. hdu3549还是网络流

    最后一次训练模板(比较熟练了) 接下来训练网络流的建图 #include <cstdio> #define INF 2147483647 int n,m,ans,x,y,z,M,h,t,T ...

  8. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  9. COGS743. [网络流24题] 最长k可重区间集

    743. [网络流24题] 最长k可重区间集 ★★★   输入文件:interv.in   输出文件:interv.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: «编 ...

随机推荐

  1. 论文阅读 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning

    6 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning207 link:https ...

  2. python创建分类器小结

    简介:分类是指利用数据的特性将其分成若干类型的过程. 监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类. 一.简单分类器 首先,用numpy创建一些基本的数据,我们创建了8个点 ...

  3. PHP时间轴函数

    PHP时间轴函数可以更好的去进行用户体验.让用户动态的知道最近是什么时候,而不是死板的datatime去转换成固定的时间. 后续版本会考虑添加这个功能,代码先贴出来. function tranTim ...

  4. JS:构造函数

    定义:在JavaScript中,用new关键字来调用的函数,称为构造函数,构造函数首字母一般大写. 理解: 构造函数就是初始化一个实例对象,对象的prototype属性是继承一个实例对象. 创建对象, ...

  5. Kubernetes-23:详解如何将CPU Manager做到游刃有余

    k8s中为什么要用CPU Manager? 默认情况下,kubelet 使用CFS配额来执行 Pod 的 CPU 约束.Kubernetes的Node节点会运行多个Pod,其中会有部分的Pod属于CP ...

  6. redis主从复制(九)

    先来简单了解下redis中提供的集群策略, 虽然redis有持久化功能能够保障redis服务器宕机也能恢复并且只有少量的数据损失,但是由于所有数据在一台服务器上,如果这台服务器出现硬盘故障,那就算是有 ...

  7. 从0到1搭建一款页面自适应组件(Vue.js)

    组件将根据屏幕比例及当前浏览器窗口大小,自动进行缩放处理. 建议在组件内使用百分比搭配flex进行布局,以便于在不同的分辨率下得到较为一致的展示效果.使用前请注意将body的margin设为0,否则会 ...

  8. JavaScript中async和await的使用以及队列问题

    宏任务和微任务的队列入门知识,可以参考之前的文章: JavaScript的事件循环机制 宏任务和微任务在前端面试中,被经常提及到,包括口头和笔试题 async && await概念 a ...

  9. Numpy的ndarray数组基础

    NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放同类型元素的多维数组. 1.数组的 ...

  10. Java中JSON字符串和对象的互转

    对象转换成json字符串: JSONObject.toJSONString(switchmes) JSON字符串转换成对象: Switchmes switchmes=(Switchmes) JSONO ...