在网络请求时,总会有各种异常情况出现,我们需要提前处理这种情况。在完善的rpc组件dubbo中,自然是不会少了这一层东西的。我们只需要通过一些简单的配置就可以达到超时限制的作用了。

  dubbo的设计理念是,客户端控制优先,服务端控制兜底。

1. 超时机制的实现思路

  要想实现超时,一般有两个思路。一个是客户端自行设置一个超时限制,达到超时时间还未返回,则抛出异常,不再等待结果。二是通过在超时后,将连接断开,从而使数据请求中断,最终也是以抛出异常的方式返回的。

  当然,超时有两种情况,一种是自己主动的超时,另一种是被别人关掉连接发生的超时(需主动主发送超时消息)。一般我们认为主动设置的超时是可控的,被动的超时将是一个不可逾越的鸿沟,如果必须需要更长的时间才能拿到结果时,此种超时将限制我们,我们只能另谋出路了,比如调用的异步化。

  一般地,要想实现超时,我们也有两种方式:一种是调用别人提供的api,其中包含了超时设置,此时仅需简单设置即可;另一种是我们自行实现的超时,比如原本只有一个无限接口,我们要实现超时,必须将其异步化,通过额外的线程来进行超时的检测和控制。

  那么,dubbo又是怎样实现超时的呢?

2. 客户端实现超时

  我们前面说过,dubbo中consumer端可以设置超时,服务端也可以提供超时设置。那么,会不会是客户端和服务端都要实现超时机制呢?不管怎么样,客户端是一定要做的。所以,我们先来看看客户端实现超时的机制。

2.1. 客户端使用超时的方式

  首先,dubbo的调置超时方式,按照其整体架构设计理念,都有几个作用域:应用级 -> 接口级 -> 方法级。 consumer端 -> provider端。

// 消费者端特定方法的配置
<dubbo:consumer interface="com.alibaba.xxx.XxxService" >
<dubbo:method name="findPerson" timeout="1000" />
</dubbo:consumer>
// 消费者端特定接口的配置
<dubbo:consumer interface="com.alibaba.xxx.XxxService" timeout="200" />
// 提供者端特定方法的配置
<dubbo:service interface="com.alibaba.xxx.XxxService" >
<dubbo:method name="findPerson" timeout="1000" />
</dubbo:service>
// 提供者端特定接口的配置
<dubbo:service interface="com.alibaba.xxx.XxxService" timeout="200" />

  当然了,上面这种是使用xml进行配置的,你还可以使用properties文件进行配置,也可以使用java代码直接进行配置。

2.2. 超时参数的读取与使用

  这些参数设置好后,在调用rpc时,进行想入相应的Invoket,进行读取参数,使用。

    // org.apache.dubbo.rpc.protocol.AsyncToSyncInvoker#invoke
@Override
public Result invoke(Invocation invocation) throws RpcException {
// 同步和异步,底层都是异步请求,仅做上层封装
Result asyncResult = invoker.invoke(invocation); try {
// 同步请求时,在内部等待
if (InvokeMode.SYNC == ((RpcInvocation) invocation).getInvokeMode()) {
/**
* NOTICE!
* must call {@link java.util.concurrent.CompletableFuture#get(long, TimeUnit)} because
* {@link java.util.concurrent.CompletableFuture#get()} was proved to have serious performance drop.
*/
asyncResult.get(Integer.MAX_VALUE, TimeUnit.MILLISECONDS);
}
} catch (InterruptedException e) {
throw new RpcException("Interrupted unexpectedly while waiting for remote result to return! method: " +
invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
} catch (ExecutionException e) {
Throwable t = e.getCause();
// 超时返回,给出详细堆栈
if (t instanceof TimeoutException) {
throw new RpcException(RpcException.TIMEOUT_EXCEPTION, "Invoke remote method timeout. method: " +
invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
} else if (t instanceof RemotingException) {
throw new RpcException(RpcException.NETWORK_EXCEPTION, "Failed to invoke remote method: " +
invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
} else {
throw new RpcException(RpcException.UNKNOWN_EXCEPTION, "Fail to invoke remote method: " +
invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
}
} catch (Throwable e) {
throw new RpcException(e.getMessage(), e);
}
return asyncResult;
} // org.apache.dubbo.rpc.protocol.AbstractInvoker#invoke
@Override
public Result invoke(Invocation inv) throws RpcException {
// if invoker is destroyed due to address refresh from registry, let's allow the current invoke to proceed
if (destroyed.get()) {
logger.warn("Invoker for service " + this + " on consumer " + NetUtils.getLocalHost() + " is destroyed, "
+ ", dubbo version is " + Version.getVersion() + ", this invoker should not be used any longer");
}
RpcInvocation invocation = (RpcInvocation) inv;
invocation.setInvoker(this);
if (CollectionUtils.isNotEmptyMap(attachment)) {
invocation.addObjectAttachmentsIfAbsent(attachment);
} Map<String, Object> contextAttachments = RpcContext.getContext().getObjectAttachments();
if (CollectionUtils.isNotEmptyMap(contextAttachments)) {
/**
* invocation.addAttachmentsIfAbsent(context){@link RpcInvocation#addAttachmentsIfAbsent(Map)}should not be used here,
* because the {@link RpcContext#setAttachment(String, String)} is passed in the Filter when the call is triggered
* by the built-in retry mechanism of the Dubbo. The attachment to update RpcContext will no longer work, which is
* a mistake in most cases (for example, through Filter to RpcContext output traceId and spanId and other information).
*/
invocation.addObjectAttachments(contextAttachments);
} invocation.setInvokeMode(RpcUtils.getInvokeMode(url, invocation));
RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation); Byte serializationId = CodecSupport.getIDByName(getUrl().getParameter(SERIALIZATION_KEY, DEFAULT_REMOTING_SERIALIZATION));
if (serializationId != null) {
invocation.put(SERIALIZATION_ID_KEY, serializationId);
} AsyncRpcResult asyncResult;
try {
// 调用远程方法
asyncResult = (AsyncRpcResult) doInvoke(invocation);
} catch (InvocationTargetException e) { // biz exception
Throwable te = e.getTargetException();
if (te == null) {
asyncResult = AsyncRpcResult.newDefaultAsyncResult(null, e, invocation);
} else {
if (te instanceof RpcException) {
((RpcException) te).setCode(RpcException.BIZ_EXCEPTION);
}
asyncResult = AsyncRpcResult.newDefaultAsyncResult(null, te, invocation);
}
} catch (RpcException e) {
if (e.isBiz()) {
asyncResult = AsyncRpcResult.newDefaultAsyncResult(null, e, invocation);
} else {
throw e;
}
} catch (Throwable e) {
asyncResult = AsyncRpcResult.newDefaultAsyncResult(null, e, invocation);
}
RpcContext.getContext().setFuture(new FutureAdapter(asyncResult.getResponseFuture()));
return asyncResult;
} // org.apache.dubbo.rpc.protocol.dubbo.DubboInvoker#doInvoke
@Override
protected Result doInvoke(final Invocation invocation) throws Throwable {
RpcInvocation inv = (RpcInvocation) invocation;
final String methodName = RpcUtils.getMethodName(invocation);
inv.setAttachment(PATH_KEY, getUrl().getPath());
inv.setAttachment(VERSION_KEY, version); ExchangeClient currentClient;
if (clients.length == 1) {
currentClient = clients[0];
} else {
currentClient = clients[index.getAndIncrement() % clients.length];
}
try {
boolean isOneway = RpcUtils.isOneway(getUrl(), invocation);
// 获取超时设置
int timeout = calculateTimeout(invocation, methodName);
invocation.put(TIMEOUT_KEY, timeout);
if (isOneway) {
boolean isSent = getUrl().getMethodParameter(methodName, Constants.SENT_KEY, false);
currentClient.send(inv, isSent);
return AsyncRpcResult.newDefaultAsyncResult(invocation);
} else {
// 响应结果回调,使用线程池接收
ExecutorService executor = getCallbackExecutor(getUrl(), inv);
// 向服务端发送请求,并返回 future 作为结果接收器
CompletableFuture<AppResponse> appResponseFuture =
currentClient.request(inv, timeout, executor).thenApply(obj -> (AppResponse) obj);
// save for 2.6.x compatibility, for example, TraceFilter in Zipkin uses com.alibaba.xxx.FutureAdapter
FutureContext.getContext().setCompatibleFuture(appResponseFuture);
AsyncRpcResult result = new AsyncRpcResult(appResponseFuture, inv);
result.setExecutor(executor);
return result;
}
} catch (TimeoutException e) {
throw new RpcException(RpcException.TIMEOUT_EXCEPTION, "Invoke remote method timeout. method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
} catch (RemotingException e) {
throw new RpcException(RpcException.NETWORK_EXCEPTION, "Failed to invoke remote method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
}
}
// 超时配置读取,多种方式,多种优先级
private int calculateTimeout(Invocation invocation, String methodName) {
// timeout-countdown, 需要传导到服务端的超时控制
Object countdown = RpcContext.getContext().get(TIME_COUNTDOWN_KEY);
// 默认1s超时
int timeout = DEFAULT_TIMEOUT;
if (countdown == null) {
timeout = (int) RpcUtils.getTimeout(getUrl(), methodName, RpcContext.getContext(), DEFAULT_TIMEOUT);
if (getUrl().getParameter(ENABLE_TIMEOUT_COUNTDOWN_KEY, false)) {
invocation.setObjectAttachment(TIMEOUT_ATTACHMENT_KEY, timeout); // pass timeout to remote server
}
} else {
TimeoutCountDown timeoutCountDown = (TimeoutCountDown) countdown;
timeout = (int) timeoutCountDown.timeRemaining(TimeUnit.MILLISECONDS);
invocation.setObjectAttachment(TIMEOUT_ATTACHMENT_KEY, timeout);// pass timeout to remote server
}
return timeout;
}
// org.apache.dubbo.rpc.support.RpcUtils#getTimeout
public static long getTimeout(URL url, String methodName, RpcContext context, long defaultTimeout) {
long timeout = defaultTimeout;
// 先方法,后接口
// 事实上,所有接口级的变量在注册的时候已经作用到了方法级上了,所以只需读取方法上的参数即可
Object genericTimeout = context.getObjectAttachment(TIMEOUT_KEY);
if (genericTimeout != null) {
timeout = convertToNumber(genericTimeout, defaultTimeout);
} else if (url != null) {
timeout = url.getMethodPositiveParameter(methodName, TIMEOUT_KEY, defaultTimeout);
}
return timeout;
}
// org.apache.dubbo.common.URL#getMethodPositiveParameter(java.lang.String, java.lang.String, long)
public long getMethodPositiveParameter(String method, String key, long defaultValue) {
if (defaultValue <= 0) {
throw new IllegalArgumentException("defaultValue <= 0");
}
long value = getMethodParameter(method, key, defaultValue);
return value <= 0 ? defaultValue : value;
} public long getMethodPositiveParameter(String method, String key, long defaultValue) {
if (defaultValue <= 0) {
throw new IllegalArgumentException("defaultValue <= 0");
}
long value = getMethodParameter(method, key, defaultValue);
return value <= 0 ? defaultValue : value;
}
// org.apache.dubbo.common.URL#getMethodParameter(java.lang.String, java.lang.String, long)
public long getMethodParameter(String method, String key, long defaultValue) {
Number n = getCachedNumber(method, key);
if (n != null) {
return n.longValue();
}
String value = getMethodParameter(method, key);
if (StringUtils.isEmpty(value)) {
return defaultValue;
}
long l = Long.parseLong(value);
updateCachedNumber(method, key, l);
return l;
} // org.apache.dubbo.rpc.protocol.AbstractInvoker#getCallbackExecutor
protected ExecutorService getCallbackExecutor(URL url, Invocation inv) {
ExecutorService sharedExecutor = ExtensionLoader.getExtensionLoader(ExecutorRepository.class).getDefaultExtension().getExecutor(url);
if (InvokeMode.SYNC == RpcUtils.getInvokeMode(getUrl(), inv)) {
// 同步请求使用少量的共享线程池,实际上是做进一步封装处理
return new ThreadlessExecutor(sharedExecutor);
} else {
// 异步调用则直接使用共享线程池,不受其他节点控制
return sharedExecutor;
}
}

  从上面可以看出,dubbo的超时机制是通过异步线程future的方式实现的,其中,同步调用的超时设置,底层也是用异步实现。这样既简化了底层实现,也对外提供了很好的易用性。因为底层都是通过netty或nio实现网络通信,而这种实现一般又是select-poll 模型或者 epoll 模型,反正也必须要用异步处理,所以不管如何也是跑不掉这个实现。只要实现好一个底层异步通知,全部基石就都好了。而上层,则只需关注是用户实现,还是框架实现了。

2.3. 客户端超时监控处理

  上面的实现,我们并没有看到具体是如何实现超时的,毕竟我们只是看到了表面现象,即只是设置了一个 timeout参数,而已。更深层次的实现,请继续。也就是说dubbo是在做请求的同时,做了超时的设置工作。

    // org.apache.dubbo.remoting.exchange.support.header.HeaderExchangeChannel#request
@Override
public CompletableFuture<Object> request(Object request, int timeout, ExecutorService executor) throws RemotingException {
if (closed) {
throw new RemotingException(this.getLocalAddress(), null,
"Failed to send request " + request + ", cause: The channel " + this + " is closed!");
}
// create request.
Request req = new Request();
req.setVersion(Version.getProtocolVersion());
req.setTwoWay(true);
req.setData(request);
// 里面包含了一个超时任务 timeTask
DefaultFuture future = DefaultFuture.newFuture(channel, req, timeout, executor);
try {
channel.send(req);
} catch (RemotingException e) {
future.cancel();
throw e;
}
return future;
}
// org.apache.dubbo.remoting.exchange.support.DefaultFuture#newFuture
/**
* init a DefaultFuture
* 1.init a DefaultFuture
* 2.timeout check
*
* @param channel channel
* @param request the request
* @param timeout timeout
* @return a new DefaultFuture
*/
public static DefaultFuture newFuture(Channel channel, Request request, int timeout, ExecutorService executor) {
final DefaultFuture future = new DefaultFuture(channel, request, timeout);
future.setExecutor(executor);
// ThreadlessExecutor needs to hold the waiting future in case of circuit return.
if (executor instanceof ThreadlessExecutor) {
((ThreadlessExecutor) executor).setWaitingFuture(future);
}
// timeout check
timeoutCheck(future);
return future;
}
// org.apache.dubbo.remoting.exchange.support.DefaultFuture#timeoutCheck
/**
* check time out of the future
*/
private static void timeoutCheck(DefaultFuture future) {
TimeoutCheckTask task = new TimeoutCheckTask(future.getId());
// 添加一个定时器
future.timeoutCheckTask = TIME_OUT_TIMER.newTimeout(task, future.getTimeout(), TimeUnit.MILLISECONDS);
} // org.apache.dubbo.common.timer.HashedWheelTimer#newTimeout
@Override
public Timeout newTimeout(TimerTask task, long delay, TimeUnit unit) {
if (task == null) {
throw new NullPointerException("task");
}
if (unit == null) {
throw new NullPointerException("unit");
} long pendingTimeoutsCount = pendingTimeouts.incrementAndGet(); if (maxPendingTimeouts > 0 && pendingTimeoutsCount > maxPendingTimeouts) {
pendingTimeouts.decrementAndGet();
throw new RejectedExecutionException("Number of pending timeouts ("
+ pendingTimeoutsCount + ") is greater than or equal to maximum allowed pending "
+ "timeouts (" + maxPendingTimeouts + ")");
} start(); // Add the timeout to the timeout queue which will be processed on the next tick.
// During processing all the queued HashedWheelTimeouts will be added to the correct HashedWheelBucket.
long deadline = System.nanoTime() + unit.toNanos(delay) - startTime; // Guard against overflow.
if (delay > 0 && deadline < 0) {
deadline = Long.MAX_VALUE;
}
HashedWheelTimeout timeout = new HashedWheelTimeout(this, task, deadline);
timeouts.add(timeout);
return timeout;
} // org.apache.dubbo.remoting.exchange.support.DefaultFuture.TimeoutCheckTask#TimeoutCheckTask
TimeoutCheckTask(Long requestID) {
this.requestID = requestID;
}
@Override
public void run(Timeout timeout) {
DefaultFuture future = DefaultFuture.getFuture(requestID);
if (future == null || future.isDone()) {
return;
} if (future.getExecutor() != null) {
future.getExecutor().execute(() -> notifyTimeout(future));
} else {
notifyTimeout(future);
}
}
// org.apache.dubbo.remoting.exchange.support.DefaultFuture.TimeoutCheckTask#notifyTimeout
private void notifyTimeout(DefaultFuture future) {
// create exception response.
Response timeoutResponse = new Response(future.getId());
// set timeout status.
timeoutResponse.setStatus(future.isSent() ? Response.SERVER_TIMEOUT : Response.CLIENT_TIMEOUT);
timeoutResponse.setErrorMessage(future.getTimeoutMessage(true));
// handle response.
DefaultFuture.received(future.getChannel(), timeoutResponse, true);
}
// org.apache.dubbo.remoting.exchange.support.DefaultFuture#received
public static void received(Channel channel, Response response, boolean timeout) {
try {
DefaultFuture future = FUTURES.remove(response.getId());
if (future != null) {
Timeout t = future.timeoutCheckTask;
if (!timeout) {
// decrease Time
t.cancel();
}
future.doReceived(response);
} else {
logger.warn("The timeout response finally returned at "
+ (new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(new Date()))
+ ", response status is " + response.getStatus()
+ (channel == null ? "" : ", channel: " + channel.getLocalAddress()
+ " -> " + channel.getRemoteAddress()) + ", please check provider side for detailed result.");
}
} finally {
CHANNELS.remove(response.getId());
}
}
// 抛出异常消息
private void doReceived(Response res) {
if (res == null) {
throw new IllegalStateException("response cannot be null");
}
if (res.getStatus() == Response.OK) {
this.complete(res.getResult());
} else if (res.getStatus() == Response.CLIENT_TIMEOUT || res.getStatus() == Response.SERVER_TIMEOUT) {
// 封装为 TimeoutException
this.completeExceptionally(new TimeoutException(res.getStatus() == Response.SERVER_TIMEOUT, channel, res.getErrorMessage()));
} else {
this.completeExceptionally(new RemotingException(channel, res.getErrorMessage()));
} // the result is returning, but the caller thread may still waiting
// to avoid endless waiting for whatever reason, notify caller thread to return.
if (executor != null && executor instanceof ThreadlessExecutor) {
ThreadlessExecutor threadlessExecutor = (ThreadlessExecutor) executor;
if (threadlessExecutor.isWaiting()) {
threadlessExecutor.notifyReturn(new IllegalStateException("The result has returned, but the biz thread is still waiting" +
" which is not an expected state, interrupt the thread manually by returning an exception."));
}
}
}

  总体来说就是,在提交服务端的查询请求时,会开启定时任务,检查超时。如果定时任务到期,还未收到结果则会触发超时通知。如果客户端还未成功发送数据,则认为是客户端自己超时。如果已经将数据发送出去,则认为暗服务端超时。这相当于是一个看门狗的形式处理了,就是说,不管服务端和客户端本身如何,总能被这东西给发现,所以这种超时控制是精确的。

  当然,除了看门狗的监控,还有的情况是需要应用自己去主动发现的。至少,它不能一直让看门狗起作用吧。

2.4. 异步处理结果的超时处理

  异步结果的处理有两种入口方式:一是后台线程处理好之后,自行将结果放置到合适的地方;二是主线程主动查询结果,如果没有完成就等待,直到完成或超时返回;dubbo是在发送请求时,设置一个定时器,检查是否超时,到超时时间就发送一个超时事件。并结束任务。

  同步和异步的结果处理方式如下:

    // org.apache.dubbo.remoting.transport.dispatcher.all.AllChannelHandler#received
@Override
public void received(Channel channel, Object message) throws RemotingException {
// 根据requestId, 取出之前设定的executor, 提交给业务线程池调用
ExecutorService executor = getPreferredExecutorService(message);
try {
// 将消息封装成 ChannelEventRunnable, 交由后续处理
executor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message));
} catch (Throwable t) {
if(message instanceof Request && t instanceof RejectedExecutionException){
sendFeedback(channel, (Request) message, t);
return;
}
throw new ExecutionException(message, channel, getClass() + " error when process received event .", t);
}
} /**
* Currently, this method is mainly customized to facilitate the thread model on consumer side.
* 1. Use ThreadlessExecutor, aka., delegate callback directly to the thread initiating the call.
* 2. Use shared executor to execute the callback.
*
* @param msg
* @return
*/
public ExecutorService getPreferredExecutorService(Object msg) {
if (msg instanceof Response) {
Response response = (Response) msg;
DefaultFuture responseFuture = DefaultFuture.getFuture(response.getId());
// a typical scenario is the response returned after timeout, the timeout response may has completed the future
if (responseFuture == null) {
return getSharedExecutorService();
} else {
// 取出之前设定的executor
ExecutorService executor = responseFuture.getExecutor();
if (executor == null || executor.isShutdown()) {
executor = getSharedExecutorService();
}
return executor;
}
} else {
return getSharedExecutorService();
}
}
// 这是同步调用时使用到的线程池 ThreadlessExecutor, 接收到数据后不会立即处理
/**
* If the calling thread is still waiting for a callback task, add the task into the blocking queue to wait for schedule.
* Otherwise, submit to shared callback executor directly.
*
* @param runnable
*/
@Override
public void execute(Runnable runnable) {
runnable = new RunnableWrapper(runnable);
synchronized (lock) {
if (!waiting) {
sharedExecutor.execute(runnable);
}
// 只要客户端的还没有触发结果检查,那么将放入队列中,即不会主动进行通知结果
else {
queue.add(runnable);
}
}
}

  可以看到同步和异步的处理方式区别在于使用不同的线程池实现,异步是直接运行,而同步则做了一次包装,这也为它自定义更合适的处理方式打下了基础。

2.5. 同步请求的结果处理方式

  同步处理时,在上层接口调用也是无感的。但是底层都被包装成了异步调用,所以会在上层api中主动进行结果的等待处理。当然,既然是同步处理,它自然是不会主动设置一个较小的超时的,而是用了一个 Integer.MAX_VALUE 的超时设置,真正的超时是由异步结果处理中抛出。

    // asyncResult.get(Integer.MAX_VALUE, TimeUnit.MILLISECONDS);
// org.apache.dubbo.rpc.AsyncRpcResult#get(long, java.util.concurrent.TimeUnit)
@Override
public Result get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
if (executor != null && executor instanceof ThreadlessExecutor) {
ThreadlessExecutor threadlessExecutor = (ThreadlessExecutor) executor;
threadlessExecutor.waitAndDrain();
}
// 最终直接从指定位置获取结果即可
return responseFuture.get(timeout, unit);
}
// org.apache.dubbo.common.threadpool.ThreadlessExecutor#waitAndDrain()
/**
* Waits until there is a task, executes the task and all queued tasks (if there're any). The task is either a normal
* response or a timeout response.
*/
public void waitAndDrain() throws InterruptedException {
/**
* Usually, {@link #waitAndDrain()} will only get called once. It blocks for the response for the first time,
* once the response (the task) reached and being executed waitAndDrain will return, the whole request process
* then finishes. Subsequent calls on {@link #waitAndDrain()} (if there're any) should return immediately.
*
* There's no need to worry that {@link #finished} is not thread-safe. Checking and updating of
* 'finished' only appear in waitAndDrain, since waitAndDrain is binding to one RPC call (one thread), the call
* of it is totally sequential.
*/
if (finished) {
return;
} Runnable runnable;
try {
// 如果服务端没有响应,这里是会一直阻塞,因此也达到了同步等待的效果
runnable = queue.take();
}catch (InterruptedException e){
waiting = false;
throw e;
}
// 当拿到结果之后,再运行后续的任务,一般没啥事了,主要就是将结果放置到合适的位置,以后后续可取
synchronized (lock) {
waiting = false;
runnable.run();
} runnable = queue.poll();
while (runnable != null) {
runnable.run();
runnable = queue.poll();
}
// mark the status of ThreadlessExecutor as finished.
finished = true;
}

  同步只是表象,异步才是核心。

2. 异步的处理方式

  异步执行时,使用的就是 ThreadPoolExecutor, 直接进行execute, 即提交到线程池立即执行。即都是统一用共享线程池进行处理,这样做的好处是,不需要等待客户端调用结果,而是主动将结果放置到future的result位置,只需等待处理即可。

    // org.apache.dubbo.remoting.transport.dispatcher.ChannelEventRunnable#run
@Override
public void run() {
if (state == ChannelState.RECEIVED) {
try {
// 直接进入到netty 管道出入站流程,并最终如前面将结果设置到指定位置
handler.received(channel, message);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel
+ ", message is " + message, e);
}
} else {
switch (state) {
case CONNECTED:
try {
handler.connected(channel);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel, e);
}
break;
case DISCONNECTED:
try {
handler.disconnected(channel);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel, e);
}
break;
case SENT:
try {
handler.sent(channel, message);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel
+ ", message is " + message, e);
}
break;
case CAUGHT:
try {
handler.caught(channel, exception);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel
+ ", message is: " + message + ", exception is " + exception, e);
}
break;
default:
logger.warn("unknown state: " + state + ", message is " + message);
}
} }

  异步处理没啥特别的,直接交由netty的pipeline机制完全处理即可。

2.6. netty相关的一点设置

  NettypClient, 与服务端交互的入口。主要用于开启网络连接,设置各种处理器,总体来说就是netty的编程模型。感兴趣的自行翻阅。

    // org.apache.dubbo.remoting.transport.netty.NettyClient#NettyClient
public NettyClient(final URL url, final ChannelHandler handler) throws RemotingException {
super(url, wrapChannelHandler(url, handler));
} @Override
protected void doOpen() throws Throwable {
NettyHelper.setNettyLoggerFactory();
bootstrap = new ClientBootstrap(CHANNEL_FACTORY);
// config
// @see org.jboss.netty.channel.socket.SocketChannelConfig
bootstrap.setOption("keepAlive", true);
bootstrap.setOption("tcpNoDelay", true);
bootstrap.setOption("connectTimeoutMillis", getConnectTimeout());
final NettyHandler nettyHandler = new NettyHandler(getUrl(), this);
bootstrap.setPipelineFactory(new ChannelPipelineFactory() {
@Override
public ChannelPipeline getPipeline() {
NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyClient.this);
ChannelPipeline pipeline = Channels.pipeline();
pipeline.addLast("decoder", adapter.getDecoder());
pipeline.addLast("encoder", adapter.getEncoder());
pipeline.addLast("handler", nettyHandler);
return pipeline;
}
});
}
比较简单,主要就是通过 NettyHandler 进入数据处理。当然,编解码是少不了的。 @Override
public void messageReceived(ChannelHandlerContext ctx, MessageEvent e) throws Exception {
NettyChannel channel = NettyChannel.getOrAddChannel(ctx.getChannel(), url, handler);
try {
handler.received(channel, e.getMessage());
} finally {
NettyChannel.removeChannelIfDisconnected(ctx.getChannel());
}
} @Override
public void received(Channel channel, Object message) throws RemotingException {
final ExchangeChannel exchangeChannel = HeaderExchangeChannel.getOrAddChannel(channel);
if (message instanceof Request) {
// handle request.
Request request = (Request) message;
if (request.isEvent()) {
handlerEvent(channel, request);
} else {
if (request.isTwoWay()) {
handleRequest(exchangeChannel, request);
} else {
handler.received(exchangeChannel, request.getData());
}
}
}
// 响应服务端结果的处理方式
else if (message instanceof Response) {
handleResponse(channel, (Response) message);
} else if (message instanceof String) {
if (isClientSide(channel)) {
Exception e = new Exception("Dubbo client can not supported string message: " + message + " in channel: " + channel + ", url: " + channel.getUrl());
logger.error(e.getMessage(), e);
} else {
String echo = handler.telnet(channel, (String) message);
if (echo != null && echo.length() > 0) {
channel.send(echo);
}
}
} else {
handler.received(exchangeChannel, message);
}
} // org.apache.dubbo.remoting.transport.netty4.NettyClientHandler#channelRead
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
NettyChannel channel = NettyChannel.getOrAddChannel(ctx.channel(), url, handler);
handler.received(channel, msg);
} // org.apache.dubbo.remoting.transport.AbstractPeer#received
@Override
public void received(Channel ch, Object msg) throws RemotingException {
if (closed) {
return;
}
handler.received(ch, msg);
}

2.7. 放置响应结果

  前面多次提到响应结束后,结果将会被放到合适的位置,我们就简单看下它到底是怎么放置的呢?其实就是 CompletableFuture 的complete方法。

    // 主动置位结果
private void doReceived(Response res) {
if (res == null) {
throw new IllegalStateException("response cannot be null");
}
if (res.getStatus() == Response.OK) {
// 放置结果后结束
this.complete(res.getResult());
} else if (res.getStatus() == Response.CLIENT_TIMEOUT || res.getStatus() == Response.SERVER_TIMEOUT) {
this.completeExceptionally(new TimeoutException(res.getStatus() == Response.SERVER_TIMEOUT, channel, res.getErrorMessage()));
} else {
this.completeExceptionally(new RemotingException(channel, res.getErrorMessage()));
} // the result is returning, but the caller thread may still waiting
// to avoid endless waiting for whatever reason, notify caller thread to return.
if (executor != null && executor instanceof ThreadlessExecutor) {
ThreadlessExecutor threadlessExecutor = (ThreadlessExecutor) executor;
if (threadlessExecutor.isWaiting()) {
threadlessExecutor.notifyReturn(new IllegalStateException("The result has returned, but the biz thread is still waiting" +
" which is not an expected state, interrupt the thread manually by returning an exception."));
}
}
}

  可以看出,同步和异步调用的区别主要是线程池的处理,以级后续事件的触发时机不同。同步调用在框架层面的假设是,发送消息之后,很快就会进行get() 操作,所以此时只需将就绪事件放入队列即可。而异步调用则可能没有后续的用户驱动,所以不能有卡点的出现,所以直接运行相应的结果通知,将结果放置到正确的位置。至于客户端来取或不来取,整体都不景程。

  超时机制,是通过一个定时器,到点检查,检查到即超时。如果结果先出来,那么,主动将定时器取消,一切正常。因为定时器是另外的线程池进行处理,不受当前处理线程的影响,所以可以很好地控制超时。不管是客户端超时,还是服务端超时,都一概处理。

  最后,再说下超时时的消息描述信息,因为这可能给我排查问题带来极大的便利。

2.8. 超时异常信息解析

  判断是客户端超时还是服务端超时,是通过是否将消息发送出去为准的。实际上,它并不能区分出到底是客户端发送得晚了,还是服务端真的处理慢了。也就是说,当客户端自己慢的时候,它很可能认为是服务端超时了。而且,客户端是假设服务端一发送加响应消息,客户端就立即能收到结果,然后就以当时时间来判定服务端的处理时间。然而这样的判断方式,在客户端自身压力很大的情况下,仍然是有失偏颇的。代码描述如下:

    // 错误信息详细描述
// org.apache.dubbo.remoting.exchange.support.DefaultFuture#getTimeoutMessage
private String getTimeoutMessage(boolean scan) {
long nowTimestamp = System.currentTimeMillis();
return (sent > 0 ? "Waiting server-side response timeout" : "Sending request timeout in client-side")
+ (scan ? " by scan timer" : "") + ". start time: "
+ (new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(new Date(start))) + ", end time: "
+ (new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(new Date(nowTimestamp))) + ","
+ (sent > 0 ? " client elapsed: " + (sent - start)
+ " ms, server elapsed: " + (nowTimestamp - sent)
: " elapsed: " + (nowTimestamp - start)) + " ms, timeout: "
+ timeout + " ms, request: " + (logger.isDebugEnabled() ? request : getRequestWithoutData()) + ", channel: " + channel.getLocalAddress()
+ " -> " + channel.getRemoteAddress();
}

  

3. server端超时实现

  通过上一节,我们可以看到客户端的超时机制比较简单,但是实际上也是非常完善的。那么,对于服务端是否也有同样的一套东西呢?事实上,要控制服务端的超时,难度要比客户端大:一是因为服务端作为服务提供者,应该是要保证服务正常处理,而不是边处理边检查是否超时;二是服务端如果发现了超时,应该怎么对客户端说呢?抛出异常或者不返回消息?客户端因为是终端,他可以忽略结果即可,但服务端这样做却是不太合适的。另外,服务端计算超时的方式是不完善的,因为超时一般是针对客户端而言,因为整体链路除了服务端的处理时间,还有网络传输、处理时间,客户端自行处理的时间等等,所以服务端的超时标准不太可靠。

3.1. 业务处理线程池接入

  当网络数据就绪之后,会将数据提交到业务线程池进行处理,也就是说io线程和业务线程是分离的。这是一般的处理方式,避免阻塞io线程,也方便扩展业务线程。我们理解,其实要做超时,在这个地方是比较合适的。

    // 服务端消息接入
// org.apache.dubbo.remoting.transport.dispatcher.all.AllChannelHandler#received
@Override
public void received(Channel channel, Object message) throws RemotingException {
ExecutorService executor = getPreferredExecutorService(message);
try {
// 交由对应的线程池异步处理, 状态为 RECEIVED
// 此处其实可能存在阻塞等待问题
executor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message));
} catch (Throwable t) {
if(message instanceof Request && t instanceof RejectedExecutionException){
sendFeedback(channel, (Request) message, t);
return;
}
throw new ExecutionException(message, channel, getClass() + " error when process received event .", t);
}
} // org.apache.dubbo.remoting.exchange.support.header.HeaderExchangeHandler#received
@Override
public void received(Channel channel, Object message) throws RemotingException {
final ExchangeChannel exchangeChannel = HeaderExchangeChannel.getOrAddChannel(channel);
if (message instanceof Request) {
// handle request.
Request request = (Request) message;
if (request.isEvent()) {
handlerEvent(channel, request);
} else {
if (request.isTwoWay()) {
// handleRequest
handleRequest(exchangeChannel, request);
} else {
handler.received(exchangeChannel, request.getData());
}
}
} else if (message instanceof Response) {
handleResponse(channel, (Response) message);
} else if (message instanceof String) {
if (isClientSide(channel)) {
Exception e = new Exception("Dubbo client can not supported string message: " + message + " in channel: " + channel + ", url: " + channel.getUrl());
logger.error(e.getMessage(), e);
} else {
String echo = handler.telnet(channel, (String) message);
if (echo != null && echo.length() > 0) {
channel.send(echo);
}
}
} else {
handler.received(exchangeChannel, message);
}
} // org.apache.dubbo.remoting.exchange.support.header.HeaderExchangeHandler#handleRequest
void handleRequest(final ExchangeChannel channel, Request req) throws RemotingException {
Response res = new Response(req.getId(), req.getVersion());
// 发生异常情况时,会被取消执行
if (req.isBroken()) {
Object data = req.getData(); String msg;
if (data == null) {
msg = null;
} else if (data instanceof Throwable) {
msg = StringUtils.toString((Throwable) data);
} else {
msg = data.toString();
}
res.setErrorMessage("Fail to decode request due to: " + msg);
res.setStatus(Response.BAD_REQUEST); channel.send(res);
return;
}
// find handler by message class.
Object msg = req.getData();
try {
CompletionStage<Object> future = handler.reply(channel, msg);
// 异步等待结果响应回调
future.whenComplete((appResult, t) -> {
try {
// 没有异常,就是正常
if (t == null) {
res.setStatus(Response.OK);
res.setResult(appResult);
} else {
res.setStatus(Response.SERVICE_ERROR);
res.setErrorMessage(StringUtils.toString(t));
}
channel.send(res);
} catch (RemotingException e) {
// 在客户端关闭连接时,发送消息将会失败
logger.warn("Send result to consumer failed, channel is " + channel + ", msg is " + e);
}
});
} catch (Throwable e) {
res.setStatus(Response.SERVICE_ERROR);
res.setErrorMessage(StringUtils.toString(e));
channel.send(res);
}
} // org.apache.dubbo.rpc.proxy.AbstractProxyInvoker#invoke
@Override
public Result invoke(Invocation invocation) throws RpcException {
try {
// 调用正常的rpc方法
Object value = doInvoke(proxy, invocation.getMethodName(), invocation.getParameterTypes(), invocation.getArguments());
CompletableFuture<Object> future = wrapWithFuture(value);
CompletableFuture<AppResponse> appResponseFuture = future.handle((obj, t) -> {
AppResponse result = new AppResponse(invocation);
if (t != null) {
if (t instanceof CompletionException) {
result.setException(t.getCause());
} else {
result.setException(t);
}
} else {
result.setValue(obj);
}
return result;
});
// 包装返回结果
return new AsyncRpcResult(appResponseFuture, invocation);
} catch (InvocationTargetException e) {
if (RpcContext.getContext().isAsyncStarted() && !RpcContext.getContext().stopAsync()) {
logger.error("Provider async started, but got an exception from the original method, cannot write the exception back to consumer because an async result may have returned the new thread.", e);
}
return AsyncRpcResult.newDefaultAsyncResult(null, e.getTargetException(), invocation);
} catch (Throwable e) {
throw new RpcException("Failed to invoke remote proxy method " + invocation.getMethodName() + " to " + getUrl() + ", cause: " + e.getMessage(), e);
}
}

  server端确实也使用了一个独立的线程池来处理业务,但是并没有看到相应的外围超时处理。这是比较疑惑的,因为它已经错过了最佳判断超时的时机了。那么,是否服务端就不能提供超时功能了呢?

3.2. server解析timeout信息

  server端仅在特殊情况下才会处理超时。它是在 TimeoutFilter 做的简单处理,仅将结果清空,然后正常返回了。

    // org.apache.dubbo.rpc.protocol.FilterNode#invoke
@Override
public Result invoke(Invocation invocation) throws RpcException {
Result asyncResult;
try {
asyncResult = filter.invoke(next, invocation);
} catch (Exception e) {
if (filter instanceof ListenableFilter) {
ListenableFilter listenableFilter = ((ListenableFilter) filter);
try {
Filter.Listener listener = listenableFilter.listener(invocation);
if (listener != null) {
listener.onError(e, invoker, invocation);
}
} finally {
listenableFilter.removeListener(invocation);
}
} else if (filter instanceof Filter.Listener) {
Filter.Listener listener = (Filter.Listener) filter;
listener.onError(e, invoker, invocation);
}
throw e;
} finally { }
return asyncResult.whenCompleteWithContext((r, t) -> {
if (filter instanceof ListenableFilter) {
ListenableFilter listenableFilter = ((ListenableFilter) filter);
Filter.Listener listener = listenableFilter.listener(invocation);
try {
if (listener != null) {
if (t == null) {
listener.onResponse(r, invoker, invocation);
} else {
listener.onError(t, invoker, invocation);
}
}
} finally {
listenableFilter.removeListener(invocation);
}
} else if (filter instanceof Filter.Listener) {
Filter.Listener listener = (Filter.Listener) filter;
if (t == null) {
listener.onResponse(r, invoker, invocation);
} else {
listener.onError(t, invoker, invocation);
}
}
});
} // org.apache.dubbo.rpc.filter.ContextFilter#invoke
@Override
public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
Map<String, Object> attachments = invocation.getObjectAttachments();
if (attachments != null) {
Map<String, Object> newAttach = new HashMap<>(attachments.size());
for (Map.Entry<String, Object> entry : attachments.entrySet()) {
String key = entry.getKey();
if (!UNLOADING_KEYS.contains(key)) {
newAttach.put(key, entry.getValue());
}
}
attachments = newAttach;
} RpcContext context = RpcContext.getContext();
context.setInvoker(invoker)
.setInvocation(invocation)
// .setAttachments(attachments) // merged from dubbox
.setLocalAddress(invoker.getUrl().getHost(), invoker.getUrl().getPort());
String remoteApplication = (String) invocation.getAttachment(REMOTE_APPLICATION_KEY);
if (StringUtils.isNotEmpty(remoteApplication)) {
context.setRemoteApplicationName(remoteApplication);
} else {
context.setRemoteApplicationName((String) context.getAttachment(REMOTE_APPLICATION_KEY));
}
// 此处为服务端的超时实现,通过 _TO:xx 配置,由客户端传导到服务端进行控制,当超时时,结果将被清空
// 即此处的超时是伪超时,客户端实现的超时才是真实的
long timeout = RpcUtils.getTimeout(invocation, -1);
if (timeout != -1) {
context.set(TIME_COUNTDOWN_KEY, TimeoutCountDown.newCountDown(timeout, TimeUnit.MILLISECONDS));
} // merged from dubbox
// we may already added some attachments into RpcContext before this filter (e.g. in rest protocol)
if (attachments != null) {
if (context.getObjectAttachments() != null) {
context.getObjectAttachments().putAll(attachments);
} else {
context.setObjectAttachments(attachments);
}
} if (invocation instanceof RpcInvocation) {
((RpcInvocation) invocation).setInvoker(invoker);
} try {
context.clearAfterEachInvoke(false);
return invoker.invoke(invocation);
} finally {
context.clearAfterEachInvoke(true);
// IMPORTANT! For async scenario, we must remove context from current thread, so we always create a new RpcContext for the next invoke for the same thread.
RpcContext.removeContext(true);
RpcContext.removeServerContext();
}
} // org.apache.dubbo.rpc.filter.TimeoutFilter#invoke
@Override
public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
return invoker.invoke(invocation);
}
// TimeoutFilter
@Override
public void onResponse(Result appResponse, Invoker<?> invoker, Invocation invocation) {
// "timeout-countdown"
Object obj = RpcContext.getContext().get(TIME_COUNTDOWN_KEY);
if (obj != null) {
// 超时后,将结果清空
TimeoutCountDown countDown = (TimeoutCountDown) obj;
if (countDown.isExpired()) {
((AppResponse) appResponse).clear(); // clear response in case of timeout.
if (logger.isWarnEnabled()) {
logger.warn("invoke timed out. method: " + invocation.getMethodName() + " arguments: " +
Arrays.toString(invocation.getArguments()) + " , url is " + invoker.getUrl() +
", invoke elapsed " + countDown.elapsedMillis() + " ms.");
}
}
}
}

  服务端的超时控制,并非像客户端那样,可以直接断开服务,或者丢弃连接。而是需要谨慎处理,此处为清空结果。这也许不是大家想要的超时。

3.3. 服务端server的开启过程

  服务端作为提供者,会将自己所有的必要的服务注册到注册中心,所以在在启动时会使用netty服务框架,打开网络端口。这个过程是在导出第一个service的时候进行的。感兴趣的自行翻阅。

    // 导出服务时会打开远程连接,对外提供端口服务
// org.apache.dubbo.config.ServiceConfig#doExportUrlsFor1Protocol
private void doExportUrlsFor1Protocol(ProtocolConfig protocolConfig, List<URL> registryURLs, int protocolConfigNum) {
String name = protocolConfig.getName();
if (StringUtils.isEmpty(name)) {
name = DUBBO;
}
...
Exporter<?> exporter = PROTOCOL.export(wrapperInvoker);
exporters.add(exporter);
...
this.urls.add(url);
}
// org.apache.dubbo.rpc.protocol.dubbo.DubboProtocol#export
@Override
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
URL url = invoker.getUrl(); // export service.
String key = serviceKey(url);
DubboExporter<T> exporter = new DubboExporter<T>(invoker, key, exporterMap);
exporterMap.put(key, exporter); //export an stub service for dispatching event
Boolean isStubSupportEvent = url.getParameter(STUB_EVENT_KEY, DEFAULT_STUB_EVENT);
Boolean isCallbackservice = url.getParameter(IS_CALLBACK_SERVICE, false);
if (isStubSupportEvent && !isCallbackservice) {
String stubServiceMethods = url.getParameter(STUB_EVENT_METHODS_KEY);
if (stubServiceMethods == null || stubServiceMethods.length() == 0) {
if (logger.isWarnEnabled()) {
logger.warn(new IllegalStateException("consumer [" + url.getParameter(INTERFACE_KEY) +
"], has set stubproxy support event ,but no stub methods founded."));
} }
} openServer(url);
optimizeSerialization(url); return exporter;
} private void openServer(URL url) {
// 一个ip:port, 对应一个server
// find server.
String key = url.getAddress();
//client can export a service which's only for server to invoke
boolean isServer = url.getParameter(IS_SERVER_KEY, true);
if (isServer) {
ProtocolServer server = serverMap.get(key);
if (server == null) {
synchronized (this) {
server = serverMap.get(key);
if (server == null) {
serverMap.put(key, createServer(url));
}
}
} else {
// server supports reset, use together with override
server.reset(url);
}
}
}
// org.apache.dubbo.rpc.protocol.dubbo.DubboProtocol#createServer
private ProtocolServer createServer(URL url) {
url = URLBuilder.from(url)
// send readonly event when server closes, it's enabled by default
.addParameterIfAbsent(CHANNEL_READONLYEVENT_SENT_KEY, Boolean.TRUE.toString())
// enable heartbeat by default
.addParameterIfAbsent(HEARTBEAT_KEY, String.valueOf(DEFAULT_HEARTBEAT))
.addParameter(CODEC_KEY, DubboCodec.NAME)
.build();
String str = url.getParameter(SERVER_KEY, DEFAULT_REMOTING_SERVER); if (str != null && str.length() > 0 && !ExtensionLoader.getExtensionLoader(Transporter.class).hasExtension(str)) {
throw new RpcException("Unsupported server type: " + str + ", url: " + url);
} ExchangeServer server;
try {
// 通过 header=org.apache.dubbo.remoting.exchange.support.header.HeaderExchanger 进行查找合适的网络传输组件
server = Exchangers.bind(url, requestHandler);
} catch (RemotingException e) {
throw new RpcException("Fail to start server(url: " + url + ") " + e.getMessage(), e);
} str = url.getParameter(CLIENT_KEY);
if (str != null && str.length() > 0) {
Set<String> supportedTypes = ExtensionLoader.getExtensionLoader(Transporter.class).getSupportedExtensions();
if (!supportedTypes.contains(str)) {
throw new RpcException("Unsupported client type: " + str);
}
} return new DubboProtocolServer(server);
} // 最终在 HeeaderExchanger 里面加载transporter
// org.apache.dubbo.remoting.exchange.support.header.HeaderExchanger#bind
@Override
public ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
return new HeaderExchangeServer(Transporters.bind(url, new DecodeHandler(new HeaderExchangeHandler(handler))));
} // org.apache.dubbo.remoting.Transporters#bind(org.apache.dubbo.common.URL, org.apache.dubbo.remoting.ChannelHandler...)
public static RemotingServer bind(URL url, ChannelHandler... handlers) throws RemotingException {
if (url == null) {
throw new IllegalArgumentException("url == null");
}
if (handlers == null || handlers.length == 0) {
throw new IllegalArgumentException("handlers == null");
}
ChannelHandler handler;
if (handlers.length == 1) {
handler = handlers[0];
} else {
handler = new ChannelHandlerDispatcher(handlers);
}
// 默认为取 netty 的配置
// @SPI("netty")
// public interface Transporter
// 而netty的配置是: netty4=org.apache.dubbo.remoting.transport.netty4.NettyTransporter
// netty=org.apache.dubbo.remoting.transport.netty4.NettyTransporter
return getTransporter().bind(url, handler);
} // org.apache.dubbo.remoting.transport.netty4.NettyTransporter#bind
@Override
public RemotingServer bind(URL url, ChannelHandler handler) throws RemotingException {
return new NettyServer(url, handler);
}
// org.apache.dubbo.remoting.transport.netty4.NettyServer#NettyServer
public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
// you can customize name and type of client thread pool by THREAD_NAME_KEY and THREADPOOL_KEY in CommonConstants.
// the handler will be wrapped: MultiMessageHandler->HeartbeatHandler->handler
super(ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME), ChannelHandlers.wrap(handler, url));
}
// org.apache.dubbo.remoting.transport.AbstractServer#AbstractServer
public AbstractServer(URL url, ChannelHandler handler) throws RemotingException {
super(url, handler);
localAddress = getUrl().toInetSocketAddress(); String bindIp = getUrl().getParameter(Constants.BIND_IP_KEY, getUrl().getHost());
int bindPort = getUrl().getParameter(Constants.BIND_PORT_KEY, getUrl().getPort());
if (url.getParameter(ANYHOST_KEY, false) || NetUtils.isInvalidLocalHost(bindIp)) {
bindIp = ANYHOST_VALUE;
}
bindAddress = new InetSocketAddress(bindIp, bindPort);
this.accepts = url.getParameter(ACCEPTS_KEY, DEFAULT_ACCEPTS);
try {
doOpen();
if (logger.isInfoEnabled()) {
logger.info("Start " + getClass().getSimpleName() + " bind " + getBindAddress() + ", export " + getLocalAddress());
}
} catch (Throwable t) {
throw new RemotingException(url.toInetSocketAddress(), null, "Failed to bind " + getClass().getSimpleName()
+ " on " + getLocalAddress() + ", cause: " + t.getMessage(), t);
}
executor = executorRepository.createExecutorIfAbsent(url);
} // org.apache.dubbo.remoting.transport.netty4.NettyServer#doOpen
/**
* Init and start netty server
*
* @throws Throwable
*/
@Override
protected void doOpen() throws Throwable {
bootstrap = new ServerBootstrap(); bossGroup = NettyEventLoopFactory.eventLoopGroup(1, "NettyServerBoss");
workerGroup = NettyEventLoopFactory.eventLoopGroup(
getUrl().getPositiveParameter(IO_THREADS_KEY, Constants.DEFAULT_IO_THREADS),
"NettyServerWorker");
// 服务端功能接入处理器
final NettyServerHandler nettyServerHandler = new NettyServerHandler(getUrl(), this);
channels = nettyServerHandler.getChannels(); boolean keepalive = getUrl().getParameter(KEEP_ALIVE_KEY, Boolean.FALSE); bootstrap.group(bossGroup, workerGroup)
.channel(NettyEventLoopFactory.serverSocketChannelClass())
.option(ChannelOption.SO_REUSEADDR, Boolean.TRUE)
.childOption(ChannelOption.TCP_NODELAY, Boolean.TRUE)
.childOption(ChannelOption.SO_KEEPALIVE, keepalive)
.childOption(ChannelOption.ALLOCATOR, PooledByteBufAllocator.DEFAULT)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
// FIXME: should we use getTimeout()?
int idleTimeout = UrlUtils.getIdleTimeout(getUrl());
NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyServer.this);
if (getUrl().getParameter(SSL_ENABLED_KEY, false)) {
ch.pipeline().addLast("negotiation",
SslHandlerInitializer.sslServerHandler(getUrl(), nettyServerHandler));
}
// 编解码, 正式处理器
// pipeline, encoder -> handler 出站, decoder -> handler 入站
ch.pipeline()
.addLast("decoder", adapter.getDecoder())
.addLast("encoder", adapter.getEncoder())
.addLast("server-idle-handler", new IdleStateHandler(0, 0, idleTimeout, MILLISECONDS))
.addLast("handler", nettyServerHandler);
}
});
// bind
ChannelFuture channelFuture = bootstrap.bind(getBindAddress());
channelFuture.syncUninterruptibly();
channel = channelFuture.channel(); } // 处理各种网络事件的分发
// org.apache.dubbo.remoting.transport.dispatcher.ChannelEventRunnable#run
@Override
public void run() {
if (state == ChannelState.RECEIVED) {
try {
handler.received(channel, message);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel
+ ", message is " + message, e);
}
} else {
switch (state) {
case CONNECTED:
try {
handler.connected(channel);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel, e);
}
break;
case DISCONNECTED:
try {
handler.disconnected(channel);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel, e);
}
break;
case SENT:
try {
handler.sent(channel, message);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel
+ ", message is " + message, e);
}
break;
case CAUGHT:
try {
handler.caught(channel, exception);
} catch (Exception e) {
logger.warn("ChannelEventRunnable handle " + state + " operation error, channel is " + channel
+ ", message is: " + message + ", exception is " + exception, e);
}
break;
default:
logger.warn("unknown state: " + state + ", message is " + message);
}
} } // org.apache.dubbo.rpc.protocol.dubbo.DubboProtocol#requestHandler
private ExchangeHandler requestHandler = new ExchangeHandlerAdapter() { @Override
public CompletableFuture<Object> reply(ExchangeChannel channel, Object message) throws RemotingException { if (!(message instanceof Invocation)) {
throw new RemotingException(channel, "Unsupported request: "
+ (message == null ? null : (message.getClass().getName() + ": " + message))
+ ", channel: consumer: " + channel.getRemoteAddress() + " --> provider: " + channel.getLocalAddress());
} Invocation inv = (Invocation) message;
Invoker<?> invoker = getInvoker(channel, inv);
// need to consider backward-compatibility if it's a callback
if (Boolean.TRUE.toString().equals(inv.getObjectAttachments().get(IS_CALLBACK_SERVICE_INVOKE))) {
String methodsStr = invoker.getUrl().getParameters().get("methods");
boolean hasMethod = false;
if (methodsStr == null || !methodsStr.contains(",")) {
hasMethod = inv.getMethodName().equals(methodsStr);
} else {
String[] methods = methodsStr.split(",");
for (String method : methods) {
if (inv.getMethodName().equals(method)) {
hasMethod = true;
break;
}
}
}
if (!hasMethod) {
logger.warn(new IllegalStateException("The methodName " + inv.getMethodName()
+ " not found in callback service interface ,invoke will be ignored."
+ " please update the api interface. url is:"
+ invoker.getUrl()) + " ,invocation is :" + inv);
return null;
}
}
RpcContext.getContext().setRemoteAddress(channel.getRemoteAddress());
Result result = invoker.invoke(inv);
return result.thenApply(Function.identity());
}
... // org.apache.dubbo.rpc.protocol.FilterNode#invoke
@Override
public Result invoke(Invocation invocation) throws RpcException {
Result asyncResult;
try {
asyncResult = filter.invoke(next, invocation);
} catch (Exception e) {
if (filter instanceof ListenableFilter) {
ListenableFilter listenableFilter = ((ListenableFilter) filter);
try {
Filter.Listener listener = listenableFilter.listener(invocation);
if (listener != null) {
listener.onError(e, invoker, invocation);
}
} finally {
listenableFilter.removeListener(invocation);
}
} else if (filter instanceof Filter.Listener) {
Filter.Listener listener = (Filter.Listener) filter;
listener.onError(e, invoker, invocation);
}
throw e;
} finally { }
// 结果回调通知, 用于监控、超时处理 之类的扩展点
return asyncResult.whenCompleteWithContext((r, t) -> {
if (filter instanceof ListenableFilter) {
ListenableFilter listenableFilter = ((ListenableFilter) filter);
Filter.Listener listener = listenableFilter.listener(invocation);
try {
if (listener != null) {
if (t == null) {
listener.onResponse(r, invoker, invocation);
} else {
listener.onError(t, invoker, invocation);
}
}
} finally {
listenableFilter.removeListener(invocation);
}
} else if (filter instanceof Filter.Listener) {
Filter.Listener listener = (Filter.Listener) filter;
if (t == null) {
listener.onResponse(r, invoker, invocation);
} else {
listener.onError(t, invoker, invocation);
}
}
});
} // org.apache.dubbo.rpc.proxy.AbstractProxyInvoker#invoke
@Override
public Result invoke(Invocation invocation) throws RpcException {
try {
// 通过代理,调用用户的rpc实现
// JavaassistProxyFactory
Object value = doInvoke(proxy, invocation.getMethodName(), invocation.getParameterTypes(), invocation.getArguments());
// 使用future 封装返回
CompletableFuture<Object> future = wrapWithFuture(value);
CompletableFuture<AppResponse> appResponseFuture = future.handle((obj, t) -> {
AppResponse result = new AppResponse(invocation);
if (t != null) {
if (t instanceof CompletionException) {
result.setException(t.getCause());
} else {
result.setException(t);
}
} else {
result.setValue(obj);
}
return result;
});
return new AsyncRpcResult(appResponseFuture, invocation);
} catch (InvocationTargetException e) {
if (RpcContext.getContext().isAsyncStarted() && !RpcContext.getContext().stopAsync()) {
logger.error("Provider async started, but got an exception from the original method, cannot write the exception back to consumer because an async result may have returned the new thread.", e);
}
return AsyncRpcResult.newDefaultAsyncResult(null, e.getTargetException(), invocation);
} catch (Throwable e) {
throw new RpcException("Failed to invoke remote proxy method " + invocation.getMethodName() + " to " + getUrl() + ", cause: " + e.getMessage(), e);
}
}

  虽然本节是讲server端的超时控制的,但是很明显这方便的讲述也很少,原因是本来就没打算在server端实现超时。我们要做的,也许只是验证一下而已。

4. 总结

  dubbo中的超时设置,可以在服务端、消费端,而且官方建议是设置在服务端,客户端做特殊处理即可。原因是服务端更清楚接口的性能情况。这是完全理解的。但它会给人一种感觉,好像是真的服务端真的实现了超时处理。然而实际情况却是,它仅将该参数传导到客户端,然后由客户端来控制了。这倒是和直觉不太一样,但是谁能说他的直觉就是对的呢。

  其实要想实现真正的服务端超时,也是可以的。同样,它也需要借助一些额外的线程池。比如,在接收其实要想实现真正的服务端超时,也是可以的。同样,它也需要借助一些额外的线程池。比如,在接收完数据之后,需要添加到业务线程池中进行处理,此时在提交之前写入一个开始时间,然后在线程池真正处理的时候,与当前时间运算,超时后就不再进行后续的计算逻辑,而是直接响应客户端超时。这个思路很简单,但至于为什么没有被实现,也许会有其他的考量,我们只讨论局部思路了。

注:本篇使用dubbo版本为 2.7.0

dubbo(九):timeout超时机制解析的更多相关文章

  1. dubbo与trivial超时机制的深入思考

    说在前面 trivial是根据之前设计的RPC框架而来的(还在增进当中),其中较为不同的一个点为,在客户端去掉了业务线程池,因为既然都要等待,不必要再加一层. 进入正题 有在网上看到这样的信息,“之前 ...

  2. 从报错“无效操作,连接被关闭”探究Transaction的Timeout超时机制

    1.报错如下:Invalid Operation the connection is closed,无效操作,连接被关闭.这个错误是并不是每次都报,只有在复杂操作.大事务的情况下才偶然报出来. sta ...

  3. Dubbo中SPI扩展机制解析

    dubbo的SPI机制类似与Java的SPI,Java的SPI会一次性的实例化所有扩展点的实现,有点显得浪费资源. dubbo的扩展机制可以方便的获取某一个想要的扩展实现,每个实现都有自己的name, ...

  4. 关于dubbo的provider和consumer都配置timeout超时时间的情况

    本文转自:http://blog.csdn.net/lkforce/article/details/54380201 前言 在dubbo的provider和consumer的配置文件中,如果都配置了t ...

  5. Dubbo超时机制导致的雪崩连接

    Bug影响:Dubbo服务提供者出现无法获取Dubbo服务处理线程异常,后端DB爆出拿不到数据库连接池,导致前端响应时间异常飙高,系统处理能力下降,核心基础服务无法提供正常服务. ​Bug发现过程: ...

  6. 从零开始学spring cloud(九) -------- 超时机制,断路器模式介绍

    目前存在的问题: 现在我们假设一下,服务提供者响应非常缓慢,那么消费者对提供者的请求就会被强制等待,直到服务返回.在高负载场景下,如果不做任何处理,这种问题很可能造成所有处理用户请求的线程都被耗竭,而 ...

  7. 剖析php脚本的超时机制

    在做php开发的时候,经常会设置max_input_time.max_execution_time,用来控制脚本的超时时间.但却从来没有思考过背后的原理. 趁着这两天有空,研究一下这个问题.文中源码取 ...

  8. 您还有心跳吗?超时机制分析(java)

    注:本人是原作者,首发于并发编程网(您还有心跳吗?超时机制分析),此文结合那里的留言作了一些修改. 问题描述 在C/S模式中,有时我们会长时间保持一个连接,以避免频繁地建立连接,但同时,一般会有一个超 ...

  9. C# Socket连接请求超时机制

    作者:RazanPaul 译者:Todd Wei 原文:http://www.codeproject.com/KB/IP/TimeOutSocket.aspx 介绍 您可能注意到了,.Net的Syst ...

随机推荐

  1. Python学习笔记: getpass module: 安全输入密码

    使用场景 使用input()函数接收用户输入的时候会将用户输入回显,对于密码肯定是不适用的.标准库里面有getpass module提供了安全输入不回显 getpass module有2个函数 get ...

  2. busybox+linux Deplay 手机服务器

    环境下载地址: Linux Deplay:     https://github.com/meefik/linuxdeploy/releases Busybox       :     https:/ ...

  3. Es5 - 11 详解

    一.ES简介 ECMAScript,欧洲计算机制造商协会 ES是一种标准,而JS是ES的一种实现 每年的ES版本中都会引入新特性 二.NRM的安装与使用 NRM是切换源的工具 ES6 2.1安装 wi ...

  4. CAS如何解决ABA问题

    点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 文章不定期同步公众号,还有各种一线大厂面试原题.我的学习系列笔记. CAS如何解决ABA问题 什么是ABA:在CAS过程中,线程1.线程2分 ...

  5. Android 12(S) 图像显示系统 - SurfaceFlinger 之 VSync - 中篇(十七)

    必读: Android 12(S) 图像显示系统 - 开篇 1 前言 这一篇文章,将继续讲解有关VSync的知识,前一篇文章 Android 12(S) 图像显示系统 - SurfaceFlinger ...

  6. 论文解读(MERIT)《Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning》

    论文信息 论文标题:Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning ...

  7. 分布式存储之GlusterFS

    公众号关注 「开源Linux」 回复「学习」,有我为您特别筛选的学习资料~ 1.glusterfs概述 GlusterFS系统是一个可扩展的网络文件系统,相比其他分布式文件系统,GlusterFS具有 ...

  8. 项目实战:rsync+sersync实现数据实时同步

    一.组网介绍 本次实验使用两台主机: qll251 角色:Rsync server + Sersync server qll252 角色: Rsync client 本次实验采用CentOS7.7系统 ...

  9. line-height和height关系

    如图所示,line-height = font-size + 上下本行距.上下半行距总是相等.font-size居于中间.当font-size值固定时,line-height越大,半行距越大.所以当l ...

  10. Mysql数据库基础_复习思维导图

    Mysql复习的一个小总结,用xmind写的.(字数没有都不给我发博客) 下面是一些备注 子查询 MySQL子查询称为内部查询,而包含子查询的查询称为外部查询. 子查询可以在使用表达式的任何地方使用, ...