数学素养 low,表达可能存在不严谨,见谅。我准备慢慢补上证明?

Theorems.

  • 裴蜀定理:关于 \(x, y\) 的线性方程 \(ax + by = c\) 有解,当且仅当 \(\gcd (a, b) | c\)。

  • 唯一分解定理:对于任意一个大于 \(1\) 的整数 \(n\),\(n\) 可以唯一地被分解成若干个质数的幂的乘积。

  • 欧拉定理:若 \(\gcd (a, m) = 1\),则 \(a ^{\varphi (m)} \equiv 1 \pmod m\)。且可知 \(a ^{n \bmod \varphi (m)} \equiv a^n \pmod m\)。

    • 扩展:\(a ^n \bmod m =
      \begin {cases}
      a ^n \bmod m &{n < \varphi (m)}
      \\
      a ^{n \bmod \varphi (m) + \varphi (m)} \bmod m &{\mathrm{Otherwise.}}
      \end {cases}\)
  • 费马小定理:若 \(p\) 为质数,则有 \(a ^p \equiv a \pmod p\)。

  • 威尔逊定理:\((p - 1)! \equiv p \pmod p\),当且仅当 \(p\) 为质数。

  • 中国剩余定理:有 \(n\) 个方程 \(x \equiv a_i \pmod {p_i}\),构成关于 \(x\) 的线性同余方程组,且 \(p_i\) 间两两互质。

    记 \(p = \prod \limits _{i = 1} ^{n} p_i, w_i = \frac {p} {p_i}\),且有 \(\mathrm{Inv}(x, y)\) 表示 \(x\) 在模 \(y\) 意义下的逆元,则方程组的解为 \(x \equiv \sum \limits _{i = 1} ^{n} a_i w_i \mathrm{Inv}(w_i, p_i) \pmod p\)。

  • 卢卡斯定理:\(d\binom {n} {m} \equiv \dbinom {n \bmod p} {m \bmod p} \dbinom {\lfloor \frac {n} {p} \rfloor} {\lfloor \frac {n} {p} \rfloor} \pmod p\)。


Conclusions.

  • \(\gcd (a^n - 1, a^m - 1) = a ^{\gcd (n, m)} - 1\)。

    • 扩展:\(\gcd (a^n - b^n, a^m - b^m) = a ^{\gcd (n, m)} - b ^{\gcd (n, m)}\)。其中 \(\gcd (a, b) = 1\)。
  • \(f_x\) 表示斐波那契数列的第 \(x\) 项,则有 \(\gcd (f(n), f(m)) = f(\gcd (n, m))\)。

  • 若有 \(ac \equiv bc \pmod m\),则有 \(a \equiv b \pmod {\frac {m} {\gcd (c, m)}}\)。

  • 若有 \(a \equiv b \pmod m\),则有 \(a \equiv b \pmod c\),其中 \(c | m\)。

  • \(\sum \limits _{i = 1} ^{n} \sum \limits _{j = 1} ^{n} [\gcd (i, j) = x] = \sum \limits _{i = 1} ^{\lfloor \frac {n} {x} \rfloor} \sum \limits _{j = 1} ^{\lfloor \frac {n} {x} \rfloor} [\gcd (i, j) = 1] = 2 \times \sum \limits _{i = 1} ^{\lfloor \frac {n} {x} \rfloor} \varphi (i) - 1\)。

  • \(\sum \limits _{d | n} \varphi (d) = n\)。

  • 若 \(d(x) = \sum \limits _{d | n} 1\),则 \(d = 1 * 1\),其中(及以下所有)的 \(*\) 代指狄利克雷卷积。

  • 若 \(\mathrm{Id}(x) = x\),则 \(\mathrm{Id} = \varphi * 1\)。

  • 若 \(I\) 为狄利克雷卷积单位元,则 \(I = \mu * 1\)。

  • \(\sum \limits _{i = 1} ^{n} \sum \limits _{j = 1} ^{m} [\gcd (i, j) = x] = \sum \limits _{d = 1} ^{\min (a, b)} \mu (d) \lfloor \frac {a} {d} \rfloor \lfloor \frac {b} {d} \rfloor\),其中 \(a = \lfloor \frac {n} {x} \rfloor, b = \lfloor \frac {m} {x} \rfloor\)。

Note -「数论 定理及结论整合」的更多相关文章

  1. Note -「最大团-最小度不等式」

      这是什么奇怪的名字qwq. 一些定义   只为便于理解,没有苛求专业的定义. 简单无向图:不存在重边.自环的无向图. \(\delta(G)\):无向图 \(G\) 中结点的最小度数.即 \(\m ...

  2. 架构设计之「 CAP 定理 」

    在计算机领域,如果是初入行就算了,如果是多年的老码农还不懂 CAP 定理,那就真的说不过去了.CAP可是每一名技术架构师都必须掌握的基础原则啊. 现在只要是稍微大一点的互联网项目都是采用 分布式 结构 ...

  3. 「About Blockchain(一)」达沃斯年会上的区块链

    「About Blockchain(一)」 --达沃斯年会上的区块链 写在前面:1月23日到26日,在瑞士达沃斯召开了第48届世界经济论坛.这个新闻本没有引起我格外的关注,直到前两天张老师分享给我一篇 ...

  4. 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)

    「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out   [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...

  5. 「给产品经理讲JVM」:垃圾收集算法

    纠结的我,给我的JVM系列终于起了第三个名字,害,我真是太难了.从 JVM 到 每日五分钟,玩转 JVM 再到现在的给产品经理讲 JVM ,虽然内容为王,但是标题可以让更多的人看到我的文章,所以,历经 ...

  6. 「Mobile Testing Summit China 2016」 中国移动互联网测试大会-议题征集

    时至北京盛夏,一场由 TesterHome 主办的关于移动互联网测试技术的盛会正在紧锣密鼓的筹备中.只要你关注软件质量,热爱测试,期待学习,都欢迎你加入这次移动测试技术大会中和我们一起分享经验.探讨话 ...

  7. 【翻译】西川善司「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,前篇(2)

    Lighting和Shading(2)镜面反射的控制和模拟次级表面散射技术 http://www.4gamer.net/games/216/G021678/20140703095/index_2.ht ...

  8. 「七天自制PHP框架」第二天:模型与数据库

    往期回顾:「七天自制PHP框架」第一天:路由与控制器,点击此处 什么是模型? 我们的WEB系统一定会和各种数据打交道,实际开发过程中,往往一个类对应了关系数据库的一张或多张数据表,这里就会出现两个问题 ...

  9. 「七天自制PHP框架」第三天:PHP实现的设计模式

    往期回顾:「七天自制PHP框架」第二天:模型与数据库,点击此处 原文地址:http://www.cnblogs.com/sweng/p/6624845.html,欢迎关注:编程老头 为什么要使用设计模 ...

随机推荐

  1. 1001-MySQL学习-第一节自习课

    MySQL学习(第一节自习课) 一. 软件下载.安装 下载地址:https://dev.mysql.com/downloads/installer/ 位置:mysql->installer-&g ...

  2. Nature | DNA甲基化测序助力人多能干细胞向胚胎全能8细胞的人工诱导|易基因项目文章

    北京时间2022年3月22日凌晨,<Nature>期刊在线刊登了由中国科学院广州生物医学与健康研究所等单位牵头,深圳市易基因科技有限公司.中国科学技术大学等单位参与,应用人多能干细胞向胚胎 ...

  3. sklearn机器学习实战-简单线性回归

    记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归 ...

  4. 在字节跳动,一个更好的企业级SparkSQL Server这么做

    SparkSQL是Spark生态系统中非常重要的组件.面向企业级服务时,SparkSQL存在易用性较差的问题,导致难满足日常的业务开发需求.本文将详细解读,如何通过构建SparkSQL服务器实现使用效 ...

  5. Centos7最小化安装报错There are no enabled repos. Run "yum repolist all" to see the repos you have.解决办法

    原因是缺少CentOS-Base.repo文件,因为我这台机器wget也不能用,所以我是下载到本地sftp上去的,传输的时候一定要在root用户下,否则会无法启动传输 这是报错的完整信息:Loadin ...

  6. 基础路径规划算法(Dijikstra、A*、D*)总结

    引言 在一张固定地图上选择一条路径,当存在多条可选的路径之时,需要选择代价最小的那条路径.我们称这类问题为最短路径的选择问题.解决这个问题最经典的算法为Dijikstra算法,其通过贪心选择的步骤从源 ...

  7. 个人NuGet服务搭建,BaGet保姆及部署教程

    前言 应该或许大概每个公司都会有自己的NuGet包仓库吧. 不会吧!不会吧!不会吧!不会还没有自己的仓NuGet仓库吧! 开个玩笑,虽然我觉得有没有无所谓,但是为了这篇博客它必须有所谓. 在工具的选择 ...

  8. 138_Power BI&Power Pivot特殊半累加度量

    博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 一.背景 半累加度量(semi-additive measure),在DAX建模分析的时候经常遇见:应用场景诸如银行存款. ...

  9. [持续更新] Python学习、使用过程中遇见的非代码层面知识(想不到更好的标题了 T_T)

    写在前面: 这篇博文记录的不是python代码.数据结构.算法相关的内容,而是在学习.使用过程中遇见的一些没有技术含量,但有时很令人抓耳挠腮的小东西.比如:python内置库怎么看.python搜索模 ...

  10. 制造企业信息化时代,SaaS系统下沉,移动端上升

    这个时代,我们是不是有很多岗位一定是要在电脑前面完成?如果我们让部分岗位的办公室人员离开电脑,让他们通过移动端来完成工作,这又会产生出一个什么样的变化?是否意味着可以有更多的时间在一线生产制造现场,从 ...