数学素养 low,表达可能存在不严谨,见谅。我准备慢慢补上证明?

Theorems.

  • 裴蜀定理:关于 \(x, y\) 的线性方程 \(ax + by = c\) 有解,当且仅当 \(\gcd (a, b) | c\)。

  • 唯一分解定理:对于任意一个大于 \(1\) 的整数 \(n\),\(n\) 可以唯一地被分解成若干个质数的幂的乘积。

  • 欧拉定理:若 \(\gcd (a, m) = 1\),则 \(a ^{\varphi (m)} \equiv 1 \pmod m\)。且可知 \(a ^{n \bmod \varphi (m)} \equiv a^n \pmod m\)。

    • 扩展:\(a ^n \bmod m =
      \begin {cases}
      a ^n \bmod m &{n < \varphi (m)}
      \\
      a ^{n \bmod \varphi (m) + \varphi (m)} \bmod m &{\mathrm{Otherwise.}}
      \end {cases}\)
  • 费马小定理:若 \(p\) 为质数,则有 \(a ^p \equiv a \pmod p\)。

  • 威尔逊定理:\((p - 1)! \equiv p \pmod p\),当且仅当 \(p\) 为质数。

  • 中国剩余定理:有 \(n\) 个方程 \(x \equiv a_i \pmod {p_i}\),构成关于 \(x\) 的线性同余方程组,且 \(p_i\) 间两两互质。

    记 \(p = \prod \limits _{i = 1} ^{n} p_i, w_i = \frac {p} {p_i}\),且有 \(\mathrm{Inv}(x, y)\) 表示 \(x\) 在模 \(y\) 意义下的逆元,则方程组的解为 \(x \equiv \sum \limits _{i = 1} ^{n} a_i w_i \mathrm{Inv}(w_i, p_i) \pmod p\)。

  • 卢卡斯定理:\(d\binom {n} {m} \equiv \dbinom {n \bmod p} {m \bmod p} \dbinom {\lfloor \frac {n} {p} \rfloor} {\lfloor \frac {n} {p} \rfloor} \pmod p\)。


Conclusions.

  • \(\gcd (a^n - 1, a^m - 1) = a ^{\gcd (n, m)} - 1\)。

    • 扩展:\(\gcd (a^n - b^n, a^m - b^m) = a ^{\gcd (n, m)} - b ^{\gcd (n, m)}\)。其中 \(\gcd (a, b) = 1\)。
  • \(f_x\) 表示斐波那契数列的第 \(x\) 项,则有 \(\gcd (f(n), f(m)) = f(\gcd (n, m))\)。

  • 若有 \(ac \equiv bc \pmod m\),则有 \(a \equiv b \pmod {\frac {m} {\gcd (c, m)}}\)。

  • 若有 \(a \equiv b \pmod m\),则有 \(a \equiv b \pmod c\),其中 \(c | m\)。

  • \(\sum \limits _{i = 1} ^{n} \sum \limits _{j = 1} ^{n} [\gcd (i, j) = x] = \sum \limits _{i = 1} ^{\lfloor \frac {n} {x} \rfloor} \sum \limits _{j = 1} ^{\lfloor \frac {n} {x} \rfloor} [\gcd (i, j) = 1] = 2 \times \sum \limits _{i = 1} ^{\lfloor \frac {n} {x} \rfloor} \varphi (i) - 1\)。

  • \(\sum \limits _{d | n} \varphi (d) = n\)。

  • 若 \(d(x) = \sum \limits _{d | n} 1\),则 \(d = 1 * 1\),其中(及以下所有)的 \(*\) 代指狄利克雷卷积。

  • 若 \(\mathrm{Id}(x) = x\),则 \(\mathrm{Id} = \varphi * 1\)。

  • 若 \(I\) 为狄利克雷卷积单位元,则 \(I = \mu * 1\)。

  • \(\sum \limits _{i = 1} ^{n} \sum \limits _{j = 1} ^{m} [\gcd (i, j) = x] = \sum \limits _{d = 1} ^{\min (a, b)} \mu (d) \lfloor \frac {a} {d} \rfloor \lfloor \frac {b} {d} \rfloor\),其中 \(a = \lfloor \frac {n} {x} \rfloor, b = \lfloor \frac {m} {x} \rfloor\)。

Note -「数论 定理及结论整合」的更多相关文章

  1. Note -「最大团-最小度不等式」

      这是什么奇怪的名字qwq. 一些定义   只为便于理解,没有苛求专业的定义. 简单无向图:不存在重边.自环的无向图. \(\delta(G)\):无向图 \(G\) 中结点的最小度数.即 \(\m ...

  2. 架构设计之「 CAP 定理 」

    在计算机领域,如果是初入行就算了,如果是多年的老码农还不懂 CAP 定理,那就真的说不过去了.CAP可是每一名技术架构师都必须掌握的基础原则啊. 现在只要是稍微大一点的互联网项目都是采用 分布式 结构 ...

  3. 「About Blockchain(一)」达沃斯年会上的区块链

    「About Blockchain(一)」 --达沃斯年会上的区块链 写在前面:1月23日到26日,在瑞士达沃斯召开了第48届世界经济论坛.这个新闻本没有引起我格外的关注,直到前两天张老师分享给我一篇 ...

  4. 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)

    「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out   [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...

  5. 「给产品经理讲JVM」:垃圾收集算法

    纠结的我,给我的JVM系列终于起了第三个名字,害,我真是太难了.从 JVM 到 每日五分钟,玩转 JVM 再到现在的给产品经理讲 JVM ,虽然内容为王,但是标题可以让更多的人看到我的文章,所以,历经 ...

  6. 「Mobile Testing Summit China 2016」 中国移动互联网测试大会-议题征集

    时至北京盛夏,一场由 TesterHome 主办的关于移动互联网测试技术的盛会正在紧锣密鼓的筹备中.只要你关注软件质量,热爱测试,期待学习,都欢迎你加入这次移动测试技术大会中和我们一起分享经验.探讨话 ...

  7. 【翻译】西川善司「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,前篇(2)

    Lighting和Shading(2)镜面反射的控制和模拟次级表面散射技术 http://www.4gamer.net/games/216/G021678/20140703095/index_2.ht ...

  8. 「七天自制PHP框架」第二天:模型与数据库

    往期回顾:「七天自制PHP框架」第一天:路由与控制器,点击此处 什么是模型? 我们的WEB系统一定会和各种数据打交道,实际开发过程中,往往一个类对应了关系数据库的一张或多张数据表,这里就会出现两个问题 ...

  9. 「七天自制PHP框架」第三天:PHP实现的设计模式

    往期回顾:「七天自制PHP框架」第二天:模型与数据库,点击此处 原文地址:http://www.cnblogs.com/sweng/p/6624845.html,欢迎关注:编程老头 为什么要使用设计模 ...

随机推荐

  1. python数据可视化-matplotlib入门(7)-从网络加载数据及数据可视化的小总结

    除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些 ...

  2. PHP 运行 mkdir() Permission Denied 的原因

    使用lamp,在上传文件时,PHP执行 mkdir($path) ,  出现没有权限的错误. 解决: 本次使用的时yii框架,所以首先确保 是apache的用户对web目录有权限,然后再给此用户加 r ...

  3. NuGet包管理平台

    这节来讲一下.NET下的包管理平台:NuGet. 我们做一个项目,除了自己的代码文件之外,实际上还要引用诸多代码文件,这些文件可能是我们自己封装的底层框架代码,或者为了完成某个功能而引用的工具类文件等 ...

  4. 实战|Linux大文件切割

    一个执着于技术的公众号 日常工作中需要对日志文件进行分析,当日志文件过大时,Linux中使用vim.cat.grep.awk等这些工具对大文件日志进行分析将会成为梦魇,具体表现在: 执行速度缓慢,文件 ...

  5. 史上最全Linux面试题(2020最新版)

    作者:ThinkWon 链接:https://blog.csdn.net/thinkwon/article/details/104588679 导读:本文整理了最新的Linux面试题,近3万字,约10 ...

  6. Centos 7.4_64位系统安装指南

    小土豆Linux学习随笔 -- 清听凌雪慕忆 目录 1. 范围 1.1标识 1.2 文档概述 2. 安装环境 3. 安装步骤 4. 注意事项 1. 范围 1.1标识 CentOS 7.4 64位系统安 ...

  7. zabbix 线路质量监控自定义python模块(Mysql版),多线程(后来发现使用协程更好)降低系统消耗

    之前零零碎碎写了一些zabbix 线路监控的脚本,工作中agnet较多,每条线路监控需求不一致,比较杂乱,现在整理成一个py模块,集合之前的所有功能 环境 python3.6以上版本,pip3(pip ...

  8. Soa: 一个轻量级的微服务库

    Soa 项目地址:Github:MatoApps/Soa 介绍 一个轻量级的微服务库,基于.Net 6 + Abp框架 可快速地将现有项目改造成为面向服务体系结构,实现模块间松耦合. 感谢 Rabbi ...

  9. 利用apache ftpserver搭建ftp服务器

    操作环境: win2012r2 x64 datacenter Apache FtpServer 1.2.0 Java SE Development Kit 8u333 commons-dbcp2-2. ...

  10. 用python实现自动化登录禅道系统 设置定时器自动执行脚本

    由于各种原因,我想试下用python实现自动登录禅道系统,并且每天定时执行.(本人第一次接触自动化,在大佬眼中门槛都没摸到的类型) 首先缕清思路: 1.实现自动登录禅道系统,用selenium实现2. ...