费用流好题

本题的建图很有意思

正常我们看到棋盘问题应该先对整个棋盘黑白染色构成一个二分图,然后再考虑建图的问题

但是本题题目中已经明确区分了不同的斜线,问题在于怎么保证一个"L"形

因此我们进一步分析:显然柱子应该放在有代价的位置,我们应该由这样的位置向上下左右连边,保证有两个就行

但是这样建图是有问题的,因为首先,难以保证选了两个位置,其次,上下/左右这种选两个的方式也是不合法的!

因此我们考虑进一步拆解这个图:我们把这个图分成三部分(请自动忽略坏点),一部分是产生代价的地方,一部分是行列号均为偶数的部分,一部分是行列号均为奇数的部分

然后我们这样建图:源点->二级源点->行列号均为偶数的部分->产生代价的部分->行列号均为奇数的部分->汇点

其中二级源点是为了限制流量不得大于$m$的

这样连边之后,就很好的保证了必须选两个且排除了选上下两个/左右两个的情况

中间的点需要拆点,拆出来两个点流量为1,费用给出

注意跑的是最大费用流,跑出来以后还要用总费用减去这个最大费用,同时我们并不需要让流量最大,因此如果费用为负直接跳出

贴代码:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
const int inf=0x3f3f3f3f;
struct Edge
{
int nxt;
int to;
int val;
int pri;
}edge[5000005];
int lim[10005];
int to[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
bool vis[55][55];
bool used[10005];
int dis[10005];
int w[55][55];
int val[10005];
int head[10005];
int pre[10005],f[10005];
int tot=0,cnt=1;
int n,m,k;
int ans=0;
int st,ed,eed;
int idx(int x,int y)
{
return (x-1)*n+y;
}
int ide(int x)
{
return x&1?x+1:x-1;
}
bool check(int x,int y)
{
return x>0&&x<=n&&y>0&&y<=n&&!vis[x][y];
}
void add(int l,int r,int z,int v)
{
edge[cnt].nxt=head[l];
edge[cnt].to=r;
edge[cnt].val=z;
edge[cnt].pri=v;
head[l]=cnt++;
}
void dadd(int l,int r,int z,int v)
{
add(l,r,z,v),add(r,l,0,-v);
}
bool spfa()
{
memset(dis,-0x3f,sizeof(dis));
memset(pre,-1,sizeof(pre));
memset(f,0,sizeof(f));
dis[tot+1]=0;
used[tot+1]=1;
lim[tot+1]=inf;
queue <int> M;
M.push(tot+1);
while(!M.empty())
{
int u=M.front();
M.pop();
for(int i=head[u];i;i=edge[i].nxt)
{
int to=edge[i].to;
if(edge[i].val&&dis[to]<dis[u]+edge[i].pri)
{
dis[to]=dis[u]+edge[i].pri;
lim[to]=min(lim[u],edge[i].val);
f[to]=u,pre[to]=i;
if(!used[to])M.push(to),used[to]=1;
}
}
used[u]=0;
}
return dis[tot+3]>0&&pre[tot+3]!=-1;
}
int EK()
{
int maxf=0,maxv=0;
while(spfa())
{
maxf+=lim[tot+3],maxv+=lim[tot+3]*dis[tot+3];
int temp=tot+3;
while(temp!=tot+1)
{
edge[pre[temp]].val-=lim[tot+3];
edge[ide(pre[temp])].val+=lim[tot+3];
temp=f[temp];
}
}
return maxv;
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
tot=n*n*2;
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)scanf("%d",&w[i][j]),ans+=w[i][j];
dadd(tot+1,tot+2,m,0);
for(int i=1;i<=k;i++)
{
int x,y;
scanf("%d%d",&x,&y);
vis[x][y]=1;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(vis[i][j])continue;
dadd((idx(i,j)<<1)-1,idx(i,j)<<1,1,w[i][j]);
if((i&1)&&(j&1))dadd(idx(i,j)<<1,tot+3,1,0);
else if(!(i&1)&&!(j&1))
{
dadd(tot+2,(idx(i,j)<<1)-1,1,0);
for(int t=0;t<4;t++)
{
int toi=i+to[t][0],toj=j+to[t][1];
if(!check(toi,toj))continue;
dadd(idx(i,j)<<1,(idx(toi,toj)<<1)-1,1,0);
}
}else
{
for(int t=0;t<4;t++)
{
int toi=i+to[t][0],toj=j+to[t][1];
if(!check(toi,toj)||!(toi&1)||!(toj&1))continue;
dadd(idx(i,j)<<1,(idx(toi,toj)<<1)-1,1,0);
}
}
}
}
printf("%d\n",ans-EK());
return 0;
}

luogu 4142的更多相关文章

  1. Luogu 魔法学院杯-第二弹(萌新的第一法blog)

    虽然有点久远  还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题  沉迷游戏,伤感情 #include <queue> ...

  2. luogu p1268 树的重量——构造,真正考验编程能力

    题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题 ...

  3. [luogu P2170] 选学霸(并查集+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2170 题目描述 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一 ...

  4. [luogu P2647] 最大收益(贪心+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品. ...

  5. Luogu 考前模拟Round. 1

    A.情书 题目:http://www.luogu.org/problem/show?pid=2264 赛中:sb题,直接暴力匹配就行了,注意一下读入和最后一句话的分句 赛后:卧槽 怎么只有40 B.小 ...

  6. luogu P2580 于是他错误的点名开始了

    luogu  P2580 于是他错误的点名开始了 https://www.luogu.org/problem/show?pid=2580 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 他会一边 ...

  7. CJOJ 1331 【HNOI2011】数学作业 / Luogu 3216 【HNOI2011】数学作业 / HYSBZ 2326 数学作业(递推,矩阵)

    CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异 ...

  8. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  9. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

  10. CJOJ 2255 【NOIP2016】组合数问题 / Luogu 2822 组合数问题 (递推)

    CJOJ 2255 [NOIP2016]组合数问题 / Luogu 2822 组合数问题 (递推) Description 组合数\[C^m_n\]表示的是从n个物品中选出m个物品的方案数.举个例子, ...

随机推荐

  1. [SSH-1]publickey,gssapi-keyex,gssapi-with-mic

    实际上,是有两个不同的原因的,它们都会造成这个报错. 原因1)client端私钥文件权限太大 解决方法:chmod 400 ~/.ssh/id_rsa  #如果是RSA算法的话,私钥生成时默认叫id_ ...

  2. java对excel的操作

    1.对比任意两张excel表是否有不同行 并输出哪一行那一列不同 2.包含解析合并单元格方法 3.比较主要思路 a.解析excel: b.遍历第一张表数据所有行 c.遍历第二张表数据所有行 d.遍历第 ...

  3. JWT 工具类的编写

    导入JWT pom依赖 <!--JWT 依赖--><dependency> <groupId>io.jsonwebtoken</groupId> < ...

  4. 记一次redis集群搭建过程

    在搭建前,我们先用vmware创建3台虚拟机,并确保它们相互之间能够ping通. 1. redis源码安装 1.1 编译安装 apt install gcc make wget http://down ...

  5. 剑指 Offer II 二分查找

    068. 查找插入位置 class Solution { public: int searchInsert(vector<int>& nums, int target) { int ...

  6. VS2019编译Qt4.8.7

    下载4.8.7源码Index of /archive/qt/4.8/4.8.7 复制mkspecs\win32-msvc2015到mkspecs\win32-msvc2019 修改qmake.conf ...

  7. php实现无限极分类

    1.无限极分类 //处理父子级 private function getChildBak($data,$parent_id = 0){ $arr=array(); $i = 0; foreach($d ...

  8. Jenkins+maven+gitlab+harbor+Rancher

  9. golang yaml配置

    Redis配置文件结构体 package config type Redis struct { Host string `yaml:"host"` Password string ...

  10. 4-发票校验-不可能为条目1000 DIF确立帐户-消息号 M8147

    SPRO-->物料管理-->评估和科目设置-->科目确定-->无向导的科目确定-->配置自动记帐(OBYC)