魔道研究

题面

思路

简单的想,就是在 \(T\) 个可重集合每个中选出 \(k\) 个最大的数组成新的可重集合,其中 \(k\) 为其编号

然后在新的集合中选前 \(n\) 大的数,求其和

考虑开 \(T + 1\) 个权值线段树,维护对应的 \(T\) 个可重集合和答案可能在的第 \(T + 1\) 个代表新的集合的线段树

由于空间限制,我们需要动态开点(其实动态开点很简单,线段树二分下去时,遇到一个空节点再使用它。如此一来,在只需开可能使用的节点数)

然后维护区间个数,区间和(注意一个点可能有多个数)

因为是动态开点,所以再记录它的左、右子树的编号

对于 \(B\) 操作,我们直接在根为 \(t\) 的线段树中加入,然后考虑它能不能进入第 \(T + 1\) 棵线段树成为可能的答案。

即查它在第 \(t\) 棵线段树中的从大到小的排名(其实就是求第 \(t\) 棵线段树中 \(p\) 到上限的个数)和)。

如果它的排名 \(\leq t\) ,则可能加入第 \(T + 1\) 个线段树。加入后把现在排名为 \(t+1\) 的数从第 \(T + 1\) 棵线段树中删去(即原先的排名为 \(t\) 的数,它在第 \(T + 1\) 棵线段树中),当然,如果有的话。

对于 \(R\) 操作,就是 \(B\) 操作的逆操作,具体见代码。

\(Code\)

#include<cstdio>
#include<iostream>
using namespace std;
typedef long long LL; const int N = 3e5 , Len = 1e9;
int n , m , tot , len = N + 1;
LL tr[18000005][5]; inline void New(int t , int x){if (!tr[t][x]) tr[t][x] = ++len;} inline void update(int t , int l , int r , int p , int v)
{
tr[t][2] += (LL)v;
tr[t][3] += (LL)p * v;
if (l == r) return;
int mid = (l + r) >> 1;
if (p <= mid)
{
if (!tr[t][0]) New(t , 0);
update(tr[t][0] , l , mid , p , v);
}
else{
if (!tr[t][1]) New(t , 1);
update(tr[t][1] , mid + 1 , r , p , v);
}
} inline int findk(int t , int l , int r , int x , int y)
{
if (l >= x && r <= y) return (int)tr[t][2];
int res = 0 , mid = (l + r) >> 1;
if (x <= mid && tr[tr[t][0]][2]) res += findk(tr[t][0] , l , mid , x , y);
if (y > mid && tr[tr[t][1]][2]) res += findk(tr[t][1] , mid + 1 , r , x , y);
return res;
} inline int kfind(int t , int l , int r , int k)
{
if (l == r) return k <= tr[t][2] ? l : 0;
int mid = (l + r) >> 1;
if (tr[tr[t][1]][2] < k) return kfind(tr[t][0] , l , mid , k - tr[tr[t][1]][2]);
else return kfind(tr[t][1] , mid + 1 , r , k);
} inline LL query(int t , int l , int r , int k)
{
if (l == r) return 1LL * min(1LL * k , tr[t][2]) * l;
int mid = (l + r) >> 1;
LL res = 0;
if (tr[tr[t][1]][2] <= k)
{
res += tr[tr[t][1]][3];
if (tr[tr[t][0]][2] && k > tr[tr[t][1]][2])
res += query(tr[t][0] , l , mid , k - tr[tr[t][1]][2]);
}
else{
if (tr[tr[t][1]][2]) res += query(tr[t][1] , mid + 1 , r , k);
}
return res;
} int main()
{
freopen("grimoire.in" , "r" , stdin);
freopen("grimoire.out" , "w" , stdout);
scanf("%d%d" , &n , &m);
int t , p;
char op[8];
for(register int i = 1; i <= m; i++)
{
int s1 , s2;
scanf("%s%d%d" , op , &t , &p);
if (op[0] == 'B')
{
update(t , 1 , Len , p , 1);
s1 = findk(t , 1 , Len , p , Len);
if (s1 <= t)
{
update(N + 1 , 1 , Len , p , 1);
s2 = kfind(t , 1 , Len , t + 1);
if (s2) update(N + 1 , 1 , Len , s2 , -1);
}
}
else{
s1 = findk(t , 1 , Len , p , Len);
update(t , 1 , Len , p , -1);
if (s1 <= t)
{
update(N + 1 , 1 , Len , p , -1);
s2 = kfind(t , 1 , Len , t);
if (s2) update(N + 1 , 1 , Len , s2 , 1);
}
}
printf("%lld\n" , query(N + 1 , 1 , Len , n));
}
}

JZOJ 4270.【NOIP2015模拟10.27】魔道研究的更多相关文章

  1. JZOJ 4269. 【NOIP2015模拟10.27】挑竹签

    4269. [NOIP2015模拟10.27]挑竹签 (File IO): input:mikado.in output:mikado.out Time Limits: 1000 ms  Memory ...

  2. [NOIP2015模拟10.27] [JZOJ4270] 魔道研究 解题报告(动态开点+权值线段树上二分)

    Description “我希望能使用更多的魔法.不对,是预定能使用啦.最终我要被大家称呼为大魔法使.为此我决定不惜一切努力.”——<The Grimoire of Marisa>雾雨魔理 ...

  3. [jzoj]4271. 【NOIP2015模拟10.27】魔法阵(37种转移的dp)

    题意不说 应该这辈子都不会忘记了... 这是我人生中做的最SB的一道DP题. 真的打的我心态崩了.... 可是竟然被我调出来了..... 也是没谁了... 我们设\(F[i][j][S]\)表示到第\ ...

  4. [NOIP2015模拟10.27] 挑竹签 解题报告(拓扑排序)

    Description 挑竹签——小时候的游戏夏夜,早苗和诹访子在月光下玩起了挑竹签这一经典的游戏.挑竹签,就是在桌上摆上一把竹签,每次从最上层挑走一根竹签.如果动了其他的竹签,就要换对手来挑.在所有 ...

  5. JZOJ 4273. 【NOIP2015模拟10.28B组】圣章-精灵使的魔法语

    4273. [NOIP2015模拟10.28B组]圣章-精灵使的魔法语 (File IO): input:elf.in output:elf.out Time Limits: 1000 ms  Mem ...

  6. JZOJ 4272. 【NOIP2015模拟10.28B组】序章-弗兰德的秘密

    272. [NOIP2015模拟10.28B组]序章-弗兰德的秘密 (File IO): input:frand.in output:frand.out Time Limits: 1000 ms  M ...

  7. [JZOJ 5912] [NOIP2018模拟10.18] VanUSee 解题报告 (KMP+博弈)

    题目链接: https://jzoj.net/senior/#contest/show/2530/2 题目: 众所周知,cqf童鞋对哲学有着深入的理解和认识,并常常将哲学思想应用在实际生活中,例如锻炼 ...

  8. [NOIP2015模拟10.22] 最小代价 解题报告 (最小生成树)

    Description 给出一幅由n个点m条边构成的无向带权图.其中有些点是黑点,其他点是白点.现在每个白点都要与他距离最近的黑点通过最短路连接(如果有很多个黑点,可以选取其中任意一个),我们想要使得 ...

  9. [jzoj 5926] [NOIP2018模拟10.25] naive 的图 解题报告(kruskal重构树+二维数点)

    题目链接: https://jzoj.net/senior/#main/show/5926 题目: 题解: 显然最小的最大路径在最小生成树上(最小生成树=最小瓶颈生成树) 于是我们建出kruskal重 ...

  10. [JZOJ 5893] [NOIP2018模拟10.4] 括号序列 解题报告 (Hash+栈+map)

    题目链接: https://jzoj.net/senior/#main/show/5893 题目: 题解: 考虑暴力怎么做,我们枚举左端点,维护一个栈,依次加入元素,与栈顶元素和栈内第二个元素相同时弹 ...

随机推荐

  1. 解决win7设置默认程序打开方式失效

    问题描述 我在设置一个文件(.ui)的默认程序打开,总是失效.设置不成功. 原因 正常这个程序应该用 designer.exe 打开,但是我之前设置过(.ui)默认程序打开程序为designer.ex ...

  2. 关于在linux上vm virtualbox读取不到U盘问题的解决

    1.设置usb2.0模式 如果你没安装拓展插件的话,调成usb2.0就会出现无效的配置这个提示,并且启动虚拟机会报 Implementation of the USB 2.0 controller n ...

  3. ArcEngine 序列化AO对象

    ArcEngine中只要是继承了IPersistStream接口的对象均可调用ArcEngine中的类库进行序列化和反序列化.一般我们会序列化成xml格式,作为字符串存储,需要的时候,反序列化为对象. ...

  4. 基于 RocketMQ 的 Dubbo-go 通信新范式

    本文作者:郝洪范 ,Dubbo-go Committer,京东资深研发工程师. 一.MQ Request Reply特性介绍 什么是 RPC 通信? 如上图所示,类似于本地调用,A 服务响应调用 B ...

  5. 【Java EE】Day09 JavaScript基础、ECMAScript语法、Java对象

    一.简介 1.概念 客户端脚本语言 脚本语言:无需编译,直接被解析执行 运行在:客户端浏览器,每个浏览器都有解析引擎 功能: 用户与页面交互 控制html元素 使页面产生动态效果 2.发展史 1992 ...

  6. GitHub 开源了多款字体「GitHub 热点速览 v.22.48」

    本期 News 快读有 GitHub 官方大动作一下子开源了两款字体,同样大动作的还有 OpenAI 发布的对话模型 ChatGPT,引燃了一波人机对话. 项目这块,也许会成为新的 Web 开发生产力 ...

  7. Springboot配置多Redis源

    Springboot配置多Redis源 一.背景 因项目部署了新集群,某些缓存数据需要在旧的redis上取,就必须配置多个数据源动态获取相对应的源以兼容业务. 二.配置依赖 <dependenc ...

  8. day05-功能实现04

    家居网购项目实现04 以下皆为部分代码,详见 https://github.com/liyuelian/furniture_mall.git 10.功能09-后台管理 删除家居 10.1需求分析/图解 ...

  9. 带你读AI论文丨针对文字识别的多模态半监督方法

    摘要:本文提出了一种针对文字识别的多模态半监督方法,具体来说,作者首先使用teacher-student网络进行半监督学习,然后在视觉.语义以及视觉和语义的融合特征上,都进行了一致性约束. 本文分享自 ...

  10. 第三章 --------------------XAML的属性和事件

    1.XAML注释是什么样子的? 在之前的章节有提起过,但是这一节我还是想系统的学习XAML,XAML的注释如下 <!-- //这其中填写注释 --> Notice:在注释的部分编译器是不编 ...