LOJ.数列分块入门3
题目
分析
由大题目知此题分块
注意处理前驱下标的合法性
\(Code\)
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 1e5 + 5;
int n, a[N], t[N], st[N], ed[N], be[N], tag[N];
void Sort(int x)
{
for(register int i = st[x]; i <= ed[x]; i++) t[i] = a[i];
sort(t + st[x], t + ed[x] + 1);
}
void prepare()
{
int num = (int)sqrt(n);
for(register int i = 1; i <= num; i++) st[i] = n / num * (i - 1) + 1, ed[i] = n / num * i;
ed[num] = n;
for(register int i = 1; i <= num; i++)
{
for(register int j = st[i]; j <= ed[i]; j++) be[j] = i;
Sort(i);
}
}
void update(int l, int r, int c)
{
int x = be[l], y = be[r];
if (x == y)
{
for(register int i = l; i <= r; i++) a[i] += c;
Sort(x); return;
}
for(register int i = l; i <= ed[x]; i++) a[i] += c;
for(register int i = st[y]; i <= r; i++) a[i] += c;
for(register int i = x + 1; i <= y - 1; i++) tag[i] += c;
Sort(x), Sort(y);
}
int get(int x, int y, int c)
{
if (!x || !y) return x + y;
int p = c - t[x] - tag[be[x]], q = c - t[y] - tag[be[y]];
return (p < q) ? (x) : (y);
}
int query(int l, int r, int c)
{
int x = be[l], y = be[r], p, q = 0x3f3f3f3f;
if (x == y)
{
for(register int i = l; i <= r; i++)
if (a[i] + tag[x] < c && c - a[i] - tag[x] < q) q = c - a[i] - tag[x];
return (q == 0x3f3f3f3f) ? (-1) : (c - q);
}
for(register int i = l; i <= ed[x]; i++)
if (a[i] + tag[x] < c && c - a[i] - tag[x] < q) q = c - a[i] - tag[x];
for(register int i = st[y]; i <= r; i++)
if (a[i] + tag[y] < c && c - a[i] - tag[y] < q) q = c - a[i] - tag[y];
for(register int i = x + 1; i <= y - 1; i++)
{
p = lower_bound(t + st[i], t + ed[i] + 1, c - tag[i]) - t - 1;
if (p < st[i]) continue;
if (c - t[p] - tag[i] < q) q = c - t[p] - tag[i];
}
return (q == 0x3f3f3f3f) ? (-1) : (c - q);
}
int main()
{
scanf("%d", &n);
for(register int i = 1; i <= n; i++) scanf("%d", &a[i]);
prepare();
for(register int i = 1, opt, l, r, c; i <= n; i++)
{
scanf("%d%d%d%d", &opt, &l, &r, &c);
if (opt == 0) update(l, r, c);
else printf("%d\n", query(l, r, c));
}
}
LOJ.数列分块入门3的更多相关文章
- LOJ 数列分块入门 9 题解题报告
LOJ 数列分块入门 9 题解题报告 \(\text{By DaiRuiChen007}\) I. 数列分块入门 1 题目大意 \(\text{Link}\) 维护一个长度为 \(n\) 的序列,支持 ...
- [Loj] 数列分块入门 1 - 9
数列分块入门 1 https://loj.ac/problem/6277 区间加 + 单点查询 #include <iostream> #include <cstdio> #i ...
- loj 数列分块入门 6 9(区间众数)
6 题意 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及单点插入,单点询问,数据随机生成. 题解 参考:http://hzwer.com/8053.html 每个块内用一个\(vecto ...
- loj 数列分块入门 5 7 8
5 题意 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间开方,区间求和. 思路 用\(tag\)记录这一块是否已全为\(1\). 除分块外,还可用 树状数组+并查集(链表) 或者 线 ...
- LOJ 数列分块入门系列
目录 1.区间加+单点查 每个块维护tag,散的暴力改. code: #include<bits/stdc++.h> using namespace std; const int maxn ...
- LOJ 6277:数列分块入门 1(分块入门)
#6277. 数列分块入门 1 内存限制:256 MiB时间限制:100 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 3 测试数据 题目描述 给出一 ...
- LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)
#6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给 ...
- LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)
#6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
- LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)
#6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
- LOJ #6282. 数列分块入门 6-分块(单点插入、单点查询、数据随机生成)
#6282. 数列分块入门 6 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 1 题目描述 给出 ...
随机推荐
- eclipse 无法将节点解析到句柄
将 干掉即可
- 【每日一题】【判断栈是否为空的方法】2022年1月9日-NC76 用两个栈实现队列的出队入队【入队简单】
描述用两个栈来实现一个队列,使用n个元素来完成 n 次在队列尾部插入整数(push)和n次在队列头部删除整数(pop)的功能. 队列中的元素为int类型.保证操作合法,即保证pop操作时队列内已有元素 ...
- 缓存管理器CacheManager使用
缓存管理器CacheManager 一.背景 代码并发量因建行活动页上升,大量请求打到Mongo导致数据库cpu100%从而服务不可用,目前解决方案,使用编程式缓存,即对缓存的操作与业务代码耦合. ...
- 简易博客页面小项目 html css
项目预览 代码 html: <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...
- 解决Win10更新后远程桌面提示CredSSP加密Oracle修正的问题
1.以管理员身份打开cmd,运行命令提示符:2.执行REG ADD HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System\Cre ...
- c语言基础理解(原创)
家中小女初上大学开学计算机课程,学习C语言时遇到困难,为帮助她尽快入门,特写了这篇基本概念理解,希望帮她快速认识清楚C语言的本质.发到博客园上,也帮助同样的C语言初学者轻松掌握C语言的本质 ...
- Django框架:13、csrf跨站请求伪造、auth认证模块及相关用法
Django框架 目录 Django框架 一.csrf跨站请求伪造 1.简介 2.csrf校验策略 form表单csrf策略 ajax请求csrf策略 3.csrf相关装饰器 FBV添加装饰器方式 C ...
- [常用工具] shell脚本快速入门笔记
Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.Shell 脚本(shell script),是一种为 shell 编写的脚本程序.业界所说的 shell 通常都是指 sh ...
- [常用工具] OpenCV_contrib库在windows下编译使用指南
本文主要讲述opencv及opencv_contrib库在windows下基于vs2017编译安装指南.所用OpenCV版本为OpenCV4.4,编译平台为vs2017. 文章目录 1 下载 2 编译 ...
- emqtt-bench
安装 安装环境:Centos7 安装包:emqtt-bench-0.4.6-alpha.2-centos7-amd64.tar.gz 建议使用已编译好的发行包进行安装,源码编译已踩坑. # 创建存放目 ...