NC14731 逆序对

题目

题目描述

求所有长度为 \(n\) 的 \(01\) 串中满足如下条件的二元组个数:

设第 \(i\) 位和第 \(j\) 位分别位 \(a_i\) 和 \(a_j\) \((i<j)\) ,则 \(a_i=1,a_j=0\) 。

答案对1e9+7取模。

输入描述

输入一个 \(n\) 。

输出描述

输出答案对1e9+7取模

示例1

输入

3

输出

6

说明

备注

\(n \leq 10^{18}\)

题解

思路

知识点:数学,快速幂。

推个公式,设\(f(n)\) 是长度为 \(n\) 时的逆序对总数,推导如下:

因为长度加一,则可以认为首位 \(1\) 和 \(0\) 与 \(n-1\) 情况的排列组合。由于 \(10\) 两种情况,那么 \(f(n-1)\) 会出现两次; \(1\) 和 \(n-1\) 所有情况的 \(0\) 都会产生一组逆序对,所以只要求出 \(n-1\) 时 \(0\) 出现次数,一共有 \(2^{n-1}\) 种长度为 \(n-1\) 的串数字,则数字总数是 \((n-1)2^{n-1}\) ,注意到 \(1\) 和 \(0\) 各占一半,则 \(0\) 的总数是 \((n-1)2^{n-2}\) 。

综上有 \(f(n) = 2f(n-1) + (n-1)2^{n-2}\),解递推得公式 \(f(n) = \frac{n(n-1)}{2}\cdot 2^{n-2}\) 。

用快速幂运算,注意 \(n=1\) 的特殊情况,以及取模问题,\(500000004 \cdot 2 \equiv 1 (mod \ 1000000007)\)。

时间复杂度 \(O(\log n)\)

空间复杂度 \(O(1)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; const int mod = 1e9 + 7; ll qpow(ll a, ll k) {
ll ans = 1;
while (k) {
if (k & 1) ans = a * ans % mod;
k >>= 1;
a = a * a % mod;
}
return ans;
} ///用不着分治,解递推得到通项 int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
ll n;
cin >> n;
int ans = (n % mod) * ((n - 1) % mod) % mod * 500000004 % mod * qpow(2, max(n - 2, 0LL)) % mod;
cout << ans << '\n';
return 0;
}

NC14731 逆序对的更多相关文章

  1. 【CQOI2011】动态逆序对 BZOJ3295

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  2. CH Round #72 奇数码问题[逆序对 观察]

    描述 你一定玩过八数码游戏,它实际上是在一个3*3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3*3的网格中. 例如:5 2 81 3 _4 6 7 在游戏过程中,可以把空格与其上 ...

  3. POJ3928Ping pong[树状数组 仿逆序对]

    Ping pong Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3109   Accepted: 1148 Descrip ...

  4. NOIP2013火柴排队[逆序对]

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  5. bzoj 3295 动态逆序对 CDQ分支

    容易看出ans[i]=ans[i-1]-q[i],q[i]为删去第i个数减少的逆序对. 先用树状数组算出最开始的逆序对,预处理出每个数前边比它大的和后边比它小的,就求出了q[i]的初始值. 设b[i] ...

  6. 诸城模拟赛 dvd的逆序对

    [题目描述] dvd是一个爱序列的孩子. 他对序列的热爱以至于他每天都在和序列度过 但是有一个问题他却一直没能解决 给你n,k求1~n有多少排列有恰好k个逆序对 [输入格式] 一行两个整数n,k [输 ...

  7. 归并求逆序数(逆序对数) && 线段树求逆序数

    Brainman Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u   Java c ...

  8. BZOJ 3295: [Cqoi2011]动态逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3865  Solved: 1298[Submit][Sta ...

  9. BZOJ 3295 【Cqoi2011】 动态逆序对

    Description 对于序列\(A\),它的逆序对数定义为满足\(i<j\),且\(A_i>A_j\)的数对\((i,j)\)的个数.给\(1\)到\(n\)的一个排列,按照某种顺序依 ...

随机推荐

  1. ArcGIS使用技巧(五)——批量裁剪

    新手,若有错误还请指正! 最近用到了,所以记下来,用同一矢量范围裁剪多幅栅格数据.用到了ArcGIS中的迭代模型(图1): 图 1 首先,需要做一个准备工作,就是把需要裁剪的栅格数据放在同一数据库中( ...

  2. Selenium3自动化测试【28】单选框、复选框、下拉选择框

    Html页面中的单选按钮.复选框.下拉框均可通过WebDriver实现操做.本节结合案例一起来看看WebDriver如何操做这些控件. 同步视频知识与系列知识内容,可关注:[公众号]:柒哥测试:[WX ...

  3. postman4.15

    测开培训笔记4.15 postman:很主流的API测试工具,也是在工作中使用很广泛的研发工具 queue 队列 先进先出的原则 列如:客户端有100个请求 服务端最多只能承受90个 其余都要排队进行 ...

  4. 【CSAPP】Architecture Lab 实验笔记

    archlab属于第四章的内容.这章讲了处理器体系结构,就CPU是怎样构成的.看到时候跃跃欲试,以为最后实验是真要去造个CPU,配套资料也是一如既往的豪华,合计四十多页的参考手册,一大包的源码和测试程 ...

  5. 干货 | 亿级Web系统负载均衡几种实现方式

    一个执着于技术的公众号 负载均衡(Load Balance)是集群技术(Cluster)的一种应用技术.负载均衡可以将工作任务分摊到多个处理单元,从而提高并发处理能力.目前最常见的负载均衡应用是Web ...

  6. Solon 1.7.6 发布,更现代感的应用开发框架

    相对于 Spring Boot 和 Spring Cloud 的项目 启动快 5 - 10 倍 qps 高 2- 3 倍 运行时内存节省 1/3 ~ 1/2 打包可以缩小到 1/2 ~ 1/10(比如 ...

  7. Java学习笔记-基础语法Ⅶ-集合

    集合 集合类特点:提供一种存储空间可变的存储模型,存储的数据容量可以随时发生改变 这里需要回顾一下,因为数组和字符串一旦创建,就不可改变,需要区分一下 import java.util.ArrayLi ...

  8. axios源码解析 - 请求方法的别名实现

    axios中的创建请求方式很多,比如axios(url),axios.get(url),axios.post(url),axios.delete(url),方便快捷的api设计让axios火得一塌糊涂 ...

  9. BFC 是什么?

    BFC 是什么? 本文写于 2020 年 7 月 17 日 总有同学问我:"这个 div 为什么会插出来?为什么 float 的 div 这么不好操作?".这其实就是没有深入理解 ...

  10. 872. Leaf-Similar Trees - LeetCode

    Question 872. Leaf-Similar Trees Solution 题目大意: 如果两个二叉树的叶子节点相同就认为这两个二叉树相似.给两个二叉树判断是否相似. 思路: 用递归把两个二叉 ...