tensorflow源码解析之framework-shape_inference
目录
- 什么是形状推断
- InferenceContext
- 关系图
- 涉及的文件
- 迭代记录
1. 什么是形状推断
前面我们讲到op的时候,提到了操作的注册器OpRegistry,并且提到,其中注册的数据是一个结构OpRegistrationData,这个结构中除了OpDef之外,还包含了一个OpShapeInferenceFn,这个数据是做什么用的呢?
我们知道,op只是定义了操作的输入输出和参数,但并没有定义操作具体的输入形状,举个例子,MatMul操作,代表矩阵乘法,这只是一个抽象的表示,没有具体说,这个矩阵乘法代表的是[2,3]x[3,4]=[2,4],还是[100,200]x[200,300]=[100,300]。所以在实际应用中,在得到输入之前,输出的真实形状是无法预知的,但在得到输入之后,我们必须能够根据输入的形状,以及当前op的作用,判断输出的具体形状,才能给它申请对应大小的内存空间。所以,我们需要为每一个操作,配备一个形状推断的函数,这就是形状推断的由来。
2. InferenceContext
前面提到了OpShapeInferenceFn,我们来看一下它的详细定义:
typedef std::function<Status(shape_inference::InferenceContext* c)> OpShapeInferenceFn;
可见,OpShapeInferenceFn是一个接收InferenceContext参数的函数,TF为所有op的形状推断函数,准备了这样一个统一的接口。所有跟形状推断相关的数据和功能函数,都放在InferenceContext这个类的内部。回想一下前面讲过的OpKernelContext,其实它们的功能很像。OpKernelContext是作为OpKernel的核心API Compute函数的参数,所有计算相关的参数都会包含在这个对象中。InferenceContext也是一样,我们把所有跟形状推断相关的数据和功能函数封装在一个InferenceContext对象中,然后把这个对象传递给OpShapeInferenceFn,就可以实现形状推断。这种设计实现了数据部分和实现逻辑的解耦。
在具体看ShapeInference类之前,我们先要看一些辅助类:
class Dimension {
private:
//...
const int64 value_;
};
class DimensionHandle {
private:
//...
const Dimension* ptr_ = nullptr;
};
class Shape {
//...
private:
const int32 rank_;
const std::vector<DimensionHandle> dims_;
};
class ShapeHandle {
//...
private:
const Shape* ptr = nullptr;
};
class DimensionOrConstant {
public:
//...
DimensionHandle dim;
int64 val;
};
class ShapeAndType {
ShapeHandle shape;
DataType dtype = DT_INVALID;
};
这几个类都比较简单。在下面用到时能够认得就好了。
下面我们看下InferenceContext这个类:
class InferenceContext {
public:
InferenceContext(int graph_def_version, const NodeDef* node_def, const OpDef& op_def, const std::vector<ShapeHandle>& input_shapes, const std::vector<const Tensor*>& input_tensors, const std::vector<ShapeHandle>& input_tensors_as_shapes, std::vector<std::unique_ptr<std::vector<ShapeAndType>>> input_handle_shapes_and_types);//构造函数
Status Run(const std::function<Status(shape_inference::InferenceContext* c)>& fn);//运行一个以this为参数的函数,没错,这里运行的就是OpShapeInferenceFn
bool MergeInput(int idx, ShapeHandle shape);
bool RelaxInput(int idx, ShapeHandle shape);
private:
ShapeManager shape_manager_;
std::vector<ShapeHandle> inputs_;
std::vector<const Tensor*> input_tensors_;
std::vector<bool> requested_input_tensor_;
std::vector<ShapeHandle> outputs_;
std::vector<ShapeHandle> input_tensors_as_shapes_;
std::vector<bool> requested_input_tensor_as_partial_shape_;
std::vector<std::unique_ptr<std::vector<ShapeAndType>>> input_handle_shapes_and_types_;
std::vector<std::unique_ptr<std::vector<ShapeAndType>>> output_handle_shapes_and_types_;
const int graph_def_version_;
const NodeDef& node_def_;
NameRangeMap input_name_map_;
NameRangeMap output_name_map_;
Status construction_status_;
};
前面已经介绍过了这个类的作用,是作为真正的形状推断函数的参数,为形状推断提供足够的数据和功能函数支持,那么这个类的成员就比较清晰了,私有数据成员为形状推断提供数据支持,而公有API,为形状推断提供公用的功能函数,比如上面提到的MergeInput和RelaxOutput,下面我们重点介绍下这两个函数的功能:
MergeInput函数是将输入索引idx处的输入与shape合并,具体的合并规则是:
- 如果ShapeHandles是一样的,或者shape是未知的,那么输入维度不变。否则,如果输入维度是未知的,那么输出是shape;
- 如果两个形状都是已知的,它们必须拥有相同的rank;
- 对于任意一个维度,如果在两个形状中这个维度都已知,那么它们必须相等;
- 如果一个形状在任意维度上的信息都多于另一个形状,那么拥有更多信息的形状将被返回。否则,一个新的形状将被构建并返回,这个新的形状综合了输入的两个形状的信息;
- 比如,合并[2,?]和[?,2]将得到[2,2];
- 比如,[2,2]不能被合并到[1,2]
如果说MergeInput函数对输入形状是“收缩”的,那么“RelaxInput”函数对输入形状就是“扩张”的,它倾向于让形状变的更模糊,具体的规则是:
- 如果ShapeHandles是一样的,那么对应的shape将会被返回;
- 如果任一个ShapeHandle是未知的,那么一个未知的ShapeHandle将会被返回;
- 如果两个形状的rank已知,但不同,那么一个未知ShapeHandle将会被返回;
- 对于任一维度,如果任一shape是未知的,那么对应的输出维度也是未知的;
- 对于任一维度,如果两个shape对应的维度位置都是已知的,但并不相同,那么对应的输出维度也是未知的;
- 如果两个shape的rank和对应维度大小都一样,那么这个形状将会被返回;
- 例如,[2,?]和[?,2]会得到[?,?];
- 例如,[2,2]和[3,2]会得到[?,2];
- 例如,[2,2]和[1,2,3]会得到?
3. 关系图
OpShapeInferenceFn-.使用参数.->InferenceContext
OpKernel::Compute-.使用参数.->OpKernelContext
4. 涉及的文件
- shape_inference
5. 迭代记录
- v1.0 2018-08-29 文档创建
- v2.0 2018-09-10 文档重构
tensorflow源码解析之framework-shape_inference的更多相关文章
- tensorflow源码解析之framework拾遗
把framework中剩余的内容,按照文件名进行了简单解析.时间原因写的很仓促,算是占个坑,后面有了新的理解再来补充. allocation_description.proto 一个对单次内存分配结果 ...
- tensorflow源码解析系列文章索引
文章索引 framework解析 resource allocator tensor op node kernel graph device function shape_inference 拾遗 c ...
- Tensorflow源码解析1 -- 内核架构和源码结构
1 主流深度学习框架对比 当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层.比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android ...
- tensorflow源码解析之common_runtime-executor-上
目录 核心概念 executor.h Executor NewLocalExecutor ExecutorBarrier executor.cc structs GraphView ExecutorI ...
- tensorflow源码解析之framework-allocator
目录 什么是allocator 内存分配器的管理 内存分配追踪 其它结构 关系图 涉及的文件 迭代记录 1. 什么是allocator Allocator是所有内存分配器的基类,它定义了内存分配器需要 ...
- tensorflow源码解析之common_runtime-executor-下
目录 核心概念 executor.h Executor NewLocalExecutor ExecutorBarrier executor.cc structs GraphView ExecutorI ...
- tensorflow源码解析之framework-op
目录 什么是op op_def定义 op注册 op构建与注册辅助结构 op重写 关系图 涉及的文件 迭代记录 1. 什么是op op和kernel是TF框架中最重要的两个概念,如果一定要做一个类比的话 ...
- tensorflow源码解析之distributed_runtime
本篇主要介绍TF的分布式运行时的基本概念.为了对TF的分布式运行机制有一个大致的了解,我们先结合/tensorflow/core/protobuf中的文件给出对TF分布式集群的初步理解,然后介绍/te ...
- tensorflow源码解析之common_runtime拾遗
把common_runtime中剩余的内容,按照文件名排序进行了简单的解析,时间原因写的很仓促,算是占个坑,后续有了新的理解再来补充. allocator_retry 有时候内存分配不可能一次完成,为 ...
- Tensorflow源码解析2 -- 前后端连接的桥梁 - Session
Session概述 1. Session是TensorFlow前后端连接的桥梁.用户利用session使得client能够与master的执行引擎建立连接,并通过session.run()来触发一次计 ...
随机推荐
- document对象常用属性
转载请注明来源:https://www.cnblogs.com/hookjc/ 注:页面上元素name属性和JavaScript引用的名称必须一致包括大小写 否则会提示你一个错误信息 " ...
- 使用MediaPlayer框架实现简单音乐播放器-陈棚
该项目需要使用MediaPlayer框架,因此程序需要先为该项目添加MediaPalyer框架,并在上面控制器类的实现部分使用#import<MediaPlayer/MediaPlayer.h& ...
- AFNetWorking 文件上传 By-H罗
一.文件上传(图片,音频,视频,文本等)(不带进度) /** * 文件上传 导入 #import "AFNetworking.h" * @param filePath 上传文件本地 ...
- LCA与树上DP
LCA 倍增 f[i][j]代表i的2^j级父亲 f[i][j]=f[f[i][j-1]][j-1] 有了f数组,如何计算"u向上跳k步到达哪个点"? 对k作二进制分解,枚举所有二 ...
- Pandas中Series与Dataframe的初始化
(一)Series初始化 1.通过列表,index自动生成 se = pd.Series(['Tom', 'Nancy', 'Jack', 'Tony']) print(se) 2.通过列表,指定in ...
- 32、python并发编程之背景知识
目录: 一 引子 二 为什么要有操作系统 三 什么是操作系统 四 操作系统与普通软件的区别 五 操作系统发展史 六 总结视频链接: 一 引子 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的 ...
- opencv笔记--Active contours
Active Contours 也称作 Snake,通过定义封闭区域曲线的能量函数,并使其最小化得到最终曲线. Active Contours 被用作物体边界精确定位上,opencv 给出了一个实现, ...
- Linux性能优化之磁盘I/O性能指标
讨论指标之前,得先解决两个概念:文件系统和磁盘I/O栈. 文件系统是什么?文件系统是在磁盘的基础上,提供了一个用来管理文件的树状结构.简言之,文件系统是树状结构,一种数据结构~逻辑上的概念.磁盘大家都 ...
- Java的Future接口
Java的Future接口 Java 中的 Future 接口和其实现类 FutureTask,代表了异步计算的结果. 1. Future接口简介 Future 是异步计算结果的容器接口,它提供了下面 ...
- 手把手教你vmware导入centos7虚拟机
安装vmware 安装vmware15:https://www.cnblogs.com/uncleyong/p/10740005.html 可能遇到的问题:VMware提示此主机支持Intel VT- ...