Codeforces Round #826 (Div. 3) A-E
A
题解
知识点:模拟。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
bool solve() {
string a, b;
cin >> a >> b;
if (a.back() != b.back()) {
if (a.back() > b.back()) cout << '<' << '\n';
else if (a.back() == b.back()) cout << '=' << '\n';
else cout << '>' << '\n';
}
else if (a.back() == 'S') {
if (a.size() > b.size()) cout << '<' << '\n';
else if (a.size() == b.size()) cout << '=' << '\n';
else cout << '>' << '\n';
}
else if (a.back() == 'L') {
if (a.size() > b.size()) cout << '>' << '\n';
else if (a.size() == b.size()) cout << '=' << '\n';
else cout << '<' << '\n';
}
else cout << '=' << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
B
题解
知识点:构造。
除了 \(n = 3\) ,其余取末尾两个倒放在前面,然后从 \(1\) 按顺序即可。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
bool solve() {
int n;
cin >> n;
if (n == 3) return false;
cout << n << ' ' << n - 1 << ' ';
for (int i = 1;i <= n - 2;i++) cout << i << ' ';
cout << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
C
题解
知识点:枚举。
暴力枚举可能的第一段作为基准划分,找到合法划分的中段的最大值,取所有合法的最小值。
时间复杂度 \(O(n^2)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[2007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i], a[i] += a[i - 1];
int mi = n;
for (int i = 1;i <= n;i++) {
int tag = a[i] - a[0];
int l = i + 1, r = i + 1, tmx = i;
while (l <= n) {
while (r <= n) {
if (a[r] - a[l - 1] > tag) break;
r++;
}
if (a[r - 1] - a[l - 1] == tag) tmx = max(tmx, r - l);
else break;
l = r;
}
if (l > n) mi = min(mi, tmx);
}
cout << mi << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
D
题解
知识点:模拟,构造。
模拟这个过程,每次对数组元素分组,组大小从 \(2\) 开始倍增,因为大组交换不会改变组内两边元素相对位置,所以从最小的组开始排序。每组比较先把一组分为两半,因为这两半在上一轮的分组排序一定排序好了,然后把两边第一个元素作为代表元比较大小,每次只交换代表元即可,下一轮比较一定是其中较小的代表元比较。
注意到,无论如何交换,都不能改变原数组两两连续分组后的各个元素的相邻元素 (如 12|34|56|78
,其中两两元素一定相邻)。因此,如果发现某次交换,一组中两半的代表元差值,不是组大小的一半,那一定无解。
时间复杂度 \(O(m)\)
空间复杂度 \(O(m)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int p[300007];
bool solve() {
int m;
cin >> m;
for (int i = 1;i <= m;i++) cin >> p[i];
int cnt = 0;
for (int i = 1;(1 << i) <= m;i++) {
for (int j = 1;j <= m;j += 1 << i) {
if (abs(p[j] - p[j + (1 << i - 1)]) != (1 << i - 1)) return false;
if (p[j] > p[j + (1 << i - 1)]) swap(p[j], p[j + (1 << i - 1)]), cnt++;
}
}
cout << cnt << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
E
知识点:线性dp。
朴素dp,设 \(dp[i]\) 为 \([1,i]\) 是否合法。考虑 \(b[i]\) 时,可以把其放下一段左侧或者是右侧,因此有转移方程:
if (i - b[i] - 1 >= 0) dp[i] |= dp[i - b[i] - 1];
if (i + b[i] <= n) dp[i + b[i]] |= dp[i - 1];
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
题解
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int b[200007];
bool dp[200007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> b[i], dp[i] = 0;
dp[0] = 1;
for (int i = 1;i <= n;i++) {
if (i - b[i] - 1 >= 0) dp[i] |= dp[i - b[i] - 1];
if (i + b[i] <= n) dp[i + b[i]] |= dp[i - 1];
}
if (dp[n]) cout << "YES" << '\n';
else cout << "NO" << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
Codeforces Round #826 (Div. 3) A-E的更多相关文章
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
- Codeforces Round #268 (Div. 2) ABCD
CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...
随机推荐
- django自带的序列化组件
1.什么是序列化组件 在django中,自带一个序列化组件,它是用来将数据进行整理.转化成特定的为一个特定的格式(比如json数据格式),然后传输给前端,以便前端对数据进行处理操作. 2.为什么要用序 ...
- Linux 02 基本命令
参考源 https://www.bilibili.com/video/BV187411y7hF?spm_id_from=333.999.0.0 版本 本文章基于 CentOS 7.6 工具 清屏 cl ...
- k8s vs k3s: 差异解析
Kubernetes无疑是容器编排领域的领头羊.但目前,我们看到K3s或轻量级的Kubernetes发行版,轻巧.高效.快速,占用空间极小.鉴于目前企业对于在生产环境中使用K3s还是K8s感到纠结.我 ...
- Vue组件的继承用法
Vue组件的继承用法 点击打开视频讲解 vue组件的继承适用于UI几乎一样,只是数据不一样的情况下,但是这种情况通过统一封装组件也是能实现的,小功能建议用封装,大功能建议用组件继承,因为大功能在结合搜 ...
- 操作 Excel 函数的快捷键
使用 Excel 函数的时候,需要用两个基本的快捷键来辅助写函数.输入函数时,Excel 会给出建议,选中函数之后不建议用回车键,因为这样做会出现#NAME?,直接使用Tab键即可.之后,通过Ctrl ...
- iommu分析之---intel irq remap框架实现
背景介绍: IRQ域层级结构: 在某些架构上,可能有多个中断控制器参与将一个中断从设备传送到目标CPU. 让我们来看看x86平台上典型的中断传递路径吧 Device --> IOAPIC -&g ...
- iOS去广告最简单方案!+以图搜漫
iOS去广告 ️推荐 | 通过下载.安装.启用(一般默认启用)描述文件,即可实现通过私人dns来达到全系统的广告拦截.隐私保护功能 ️注意: 限 iOS 14 及以上版本系统使用 复制链接需在 saf ...
- 【JDBC】学习路径9-dbcp数据源的使用
第一章:下载 要下载三个东西:commons pool.commons log.dbcp dbcp中有些东西是依赖于commons pool 和 commons log 的. 缺一不可,否则无法正确运 ...
- VM虚拟机安装
VM虚拟机安装 1.安装vm虚拟机软件 1.1 双击打开虚拟机文件 1.2 根据向导安装 下一步 安装好了 不要着急点完成在 安装目录中有许可证. 1.3激活操作 2.虚拟机原理简介 3. 新建虚拟机 ...
- 用bash反弹shell
用bash反弹shell 受害主机:linux系统 攻击机:需要安装netcat(nc) 受害主机执行:ifconfig ## 查看受害主机ip 攻击机执行:nc -lvp 19999 ## 在攻击 ...