【NOI2016】 循环之美 题解
Solution
由数论基础知识 答案即为$$\sum_{i = 1}^n\sum_{j = 1}^m[i \perp j][j \perp k]$$
莫反套路可化为$$\sum_{d = 1}\mu(d)[d \perp k] \lfloor \frac{n}{d} \rfloor \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}[j \perp k]$$
如果我们可以求出\(g(x)=\sum_{i=1}^x [x \perp k]\),那么后面那坨东西就容易分块搞掉
然后我们惊奇的发现\(g(n)=\lfloor \frac{n}{k} \rfloor g(k) + g(n\mod k)\)
然后我们只需要求\(f(n)=\sum_{i=1}^n \mu(i)[i \perp k]\)的前缀和了
这一部分是本题难点。
发现
f(n)&=\sum_{i=1}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k] - \sum_{i=2}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k] \\
&=\sum_{i=1}^n \sum_{j=1}^{\lfloor \frac{n}{i} \rfloor} \mu(j) [ij \perp k] - \sum_{i=2}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k]\\
&=\sum_{T=1}^n [T \perp k] \sum_{d | k}\mu(d) - \sum_{i=2}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k] \\
&=1 - \sum_{i=2}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k]
\end{aligned}
\]
至此,我们成功构造出了杜教筛式子。
问题迎刃而解。
Code
#include <cstdio>
#include <iostream>
#include <map>
#define LL long long
using namespace std;
inline LL read() {
LL res = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar());
for(; isdigit(ch); ch = getchar()) res = (res << 1) + (res << 3) + (ch ^ 48);
return res;
}
int n, k, vis[3000000], p[3000000], cnt, g[3000000], m, mu[3000000], f[3000000];
LL ans;
void Sieve() {
mu[1] = 1;
for(int i = 2; i <= 2000000; ++i) {
if(!vis[i]) p[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && p[j] * i <= 2000000; ++j) {
vis[i * p[j]] = 1;
if(i % p[j] == 0) break;
mu[i * p[j]] = - mu[i];
}
}
}
int gcd(int x, int y) {return (y == 0) ? x : gcd(y, x % y);}
map <int, LL> re;
void Init() {
for(int i = 1; i <= k; ++i) {
g[i] = g[i - 1];
if(gcd(i, k) == 1) ++ g[i];
}
for(int i = 1; i <= 2000000; ++i) {
f[i] = f[i - 1];
if(gcd(i, k) == 1) f[i] += mu[i];
}
return ;
}
LL G(int x, int y) {return x / y * g[y] + g[x % y];}
LL F(int x) {
if(x <= 2000000) return f[x];
if(re.find(x) != re.end()) return re[x];
LL res = 1;
for(int l = 2, r; l <= x; l = r + 1) {
r = x / (x / l);
res -= F(x / l) * (G(r, k) - G(l - 1, k));
}
return re[x] = res;
}
int main() {
n = read(), m = read(), k = read();
Sieve();
Init();
for(int l = 1, r; l <= n && l <= m; l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans = ans + 1ll * (F(r) - F(l - 1)) * (n / l) * G(m / l, k);
}
printf("%lld\n",ans);
}
【NOI2016】 循环之美 题解的更多相关文章
- [UOJ#221][BZOJ4652][Noi2016]循环之美
[UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...
- luogu 1587 [NOI2016]循环之美
LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...
- 题解 P1587 【[NOI2016]循环之美】
知识点:莫比乌斯反演 积性函数 杜教筛 废话前言: 我是古明地恋,写这篇题解的人已经被我 请各位读者自行无视搞事的恋恋带有删除线的内容,谢谢茄子. 这道题目本身并不难,但是公式推导/代码过程中具有迷惑 ...
- bzoj4652 [Noi2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...
- [NOI2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...
- BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...
- BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...
- 并不对劲的bzoj4652:loj2085:uoj221:p1587:[NOI2016]循环之美
题目大意 对于已知的十进制数\(n\)和\(m\),在\(k\)进制下,有多少个数值上互不相等的纯循环小数,可以用\(x/y\)表示,其中 \(1\leq x\leq n,1\leq y\leq m\ ...
- luogu P1587 [NOI2016]循环之美
传送门 首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那 ...
随机推荐
- MySQL查询时间常用函数
查看本月数据 SELECT *FROMcontent_publishWHERE date_format(publish_time, '%Y %m') = date_format(DATE_SUB(cu ...
- layui框架图片上传至服务器
注意:只可用于数据量较小的项目,数据量庞大的项目不要用这个,否则会造成图片数量庞大,至服务器运行速度变慢或瘫痪 HTML代码 //前端使用的是layui框架<div class="la ...
- Host long.com not found: 2(SERVFAIL)
环境: centos 7.9 地址:192.168.200.100 相关配置 name.conf文件: named.zones文件: 正反解析文件: 重启DNS服务: 1 [root@server ...
- linux 旁路掉协议栈的处理点
对于协议栈的发展,目前有三种处理趋势,一种是类似于使用dpdk的方式,然后将协议栈放到用户态来做,做得比较好的一般都是以bsd的协议栈为底子,可以参考的是腾讯开源的的方案,另外一种是,继续放在内核,但 ...
- 编写X86的ShellCode
ShellCode 定义 ShellCode是不依赖环境,放到任何地方都能够执行的机器码 编写ShellCode的方式有两种,分别是用编程语言编写或者用ShellCode生成器自动生成 ShellCo ...
- mybatisplus-ActiveRecord 模式
ActiveRecord 模式 直接调用Model对象来进行增删改查. 实体类只需继承 Model 类即可进行强大的 CRUD 操作 需要项目中已注入对应实体的BaseMapper 实体类User 点 ...
- Vue刷新页面VueX中数据清空了,怎么重新获取?
Vue刷新页面VueX数据清空了,怎么重新获取? 点击打开视频讲解更详细 在vue中刷新页面后,vuex中的数据就没有了,这时我们要想使用就要重新获取数据了, 怎么在刷新后重新获取数据呢??? 这时我 ...
- Html飞机大战(八):子弹的移动和管理
好家伙,这应该是这个小游戏最难的几个点之一了 现在我们要做出子弹射击的效果我们应该如何处理? 1.首先我们要确定几个变量和方法的关系 变量: 子弹 bullet 弹夹(用来装子弹的东西)bulle ...
- const修饰符总结
1.什么是const? const就是constant的缩写,意思是"恒定不变的",它是定义只读变量的关键字,或者说const是定义常变量的关键字,常类型的变量或对象的值是不能被更 ...
- 【多服务场景化解决方案】智能家居(UrbanHome)
介绍 UrbanHome是一款提供房屋维修服务的移动应用.如有维修需求,用户可通过该应用联系所在城市的管道工,电工,保洁,漆匠,木匠,修理工等,或是搜寻导航附近的维修商店. 通过构建UrbanHo ...