我们常见的并发锁ReentrantLockCountDownLatchSemaphoreCyclicBarrier都是基于AQS实现的,所以说不懂AQS实现原理的,就不能说了解Java锁。

上篇文章讲了AQS的加锁流程,这篇文章再一块看一下AQS具体源码实现。

先回顾一下AQS的加锁流程

1. AQS加锁流程

AQS的加锁流程并不复杂,只要理解了同步队列条件队列,以及它们之间的数据流转,就算彻底理解了AQS

  1. 当多个线程竞争AQS锁时,如果有个线程获取到锁,就把ower线程设置为自己
  2. 没有竞争到锁的线程,在同步队列中阻塞(同步队列采用双向链表,尾插法)。
  3. 持有锁的线程调用await方法,释放锁,追加到条件队列的末尾(条件队列采用单链表,尾插法)。
  4. 持有锁的线程调用signal方法,唤醒条件队列的头节点,并转移到同步队列的末尾。
  5. 同步队列的头节点优先获取到锁

了解AQS加锁流程之后,再去看源码就容易理解了。

2. AQS的数据结构

// 继承自AbstractOwnableSynchronizer,为了记录哪个线程占用锁
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer { // 同步状态,0表示无锁,每次加锁+1,释放锁-1
private volatile int state; // 同步队列的头尾节点
private transient volatile Node head;
private transient volatile Node tail; // Node节点,用来包装线程,放到队列中
static final class Node {
// 节点中的线程
volatile Thread thread; // 节点状态
volatile int waitStatus; // 同步队列的前驱节点和后继节点
volatile Node prev;
volatile Node next; // 条件队列的后继节点
Node nextWaiter;
} // 条件队列
public class ConditionObject implements Condition {
// 条件队列的头尾节点
private transient Node firstWaiter;
private transient Node lastWaiter;
}
}

首先AQS继承自AbstractOwnableSynchronizer,其实是为了记录哪个线程正在占用锁。

public abstract class AbstractOwnableSynchronizer {

    private transient Thread exclusiveOwnerThread;

    // 设置占用锁的线程
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
} protected final Thread getExclusiveOwnerThread() {
return exclusiveOwnerThread;
}
}

无论是同步队列还是条件队列中线程都需要包装成Node节点。

虽然同步队列和条件队列都是由Node节点组成的,但是同步队列中是使用prev和next组成双向链表,nextWaiter只用来表示是共享模式还是排他模式。

条件队列没有使用到Node中prev和next属性,而是使用nextWaiter组成单链表。

这个复用对象的设计思想值得我们学习。

同步队列head节点是个哑节点,里面并没有存储线程对象。当然head节点也可以看成是给当前持有锁的线程使用的。

Node节点的状态(waitStatus)共有5种:

  • 1 cancelled:表示线程已经被取消
  • 0 初始化:Node节点的默认值
  • -1 signal: 表示节点线程在释放锁后要唤醒同步队列中的下一个节点线程
  • -2 condition: 当前节点在条件队列中
  • -3 propagate: 释放共享资源的时候会向后传播释放其他共享节点(用于共享模式)

3. AQS方法概览

AQS支持独占和共享两种访问资源的模式(独占模式又叫排他模式)。

独占模式的方法:

// 加锁
acquire();
// 加可中断的锁
acquireInterruptibly();
// 一段时间内,加锁不成功,就不加了
tryAcquireNanos(int arg, long nanosTimeout);
// 释放锁
release();

共享模式的方法:

// 加锁
acquireShared();
// 加可中断的锁
acquireSharedInterruptibly();
// 一段时间内,加锁不成功,就不加了
tryAcquireSharedNanos(int arg, long nanosTimeout);
// 释放锁
releaseShared();

独占模式和共享模式的方法并没有实现具体的加锁、释放锁逻辑,AQS中只是定义了加锁、释放锁的抽象方法。

留给子类实现的抽象方法:

// 加独占锁
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
// 释放独占锁
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
} // 加共享锁
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
// 释放共享锁
protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
} // 判断是否是当前线程正在持有锁
protected boolean isHeldExclusively() {
throw new UnsupportedOperationException();
}

这里就用到了设计模式中的模板模式,父类AQS定义了加锁、释放锁的流程,子类ReentrantLockCountDownLatchSemaphoreCyclicBarrier负责实现具体的加锁、释放锁逻辑。

这不是个面试知识点吗?

面试官再问你,你看过哪些框架源码使用到了设计模式?

你就可以回答AQS源码中用到了模板模式,巴拉巴拉,妥妥的加分项!

4. AQS源码剖析

整个加锁流程如下:

先看一下加锁方法的源码:

4.1 加锁

// 加锁方法,传参是1
public final void acquire(int arg) {
// 1. 首先尝试获取锁,如果获取成功,则设置state+1,exclusiveOwnerThread=currentThread(留给子类实现)
if (!tryAcquire(arg) &&
// 2. 如果没有获取成功,把线程组装成Node节点,追加到同步队列末尾
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) {
// 3. 加入同步队列后,将自己挂起
selfInterrupt();
}
}

再看一下addWaiter方法源码,作用就是把线程组装成Node节点,追加到同步队列末尾。

// 追加到同步队列末尾,传参是共享模式or排他模式
private Node addWaiter(Node mode) {
// 1. 组装成Node节点
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
if (pred != null) {
node.prev = pred;
// 2. 在多线程竞争不激烈的情况下,通过CAS方法追加到同步队列末尾
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 3. 在多线程竞争激烈的情况下,使用死循环保证追加到同步队列末尾
enq(node);
return node;
} // 创建Node节点,传参是线程,共享模式or排他模式
Node(Thread thread, Node mode) {
this.thread = thread;
this.nextWaiter = mode;
} // 通过死循环的方式,追加到同步队列末尾
private Node enq(final Node node) {
for (; ; ) {
Node t = tail;
if (t == null) {
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}

再看一下addWaiter方法外层的acquireQueued方法,作用就是:

  1. 在追加到同步队列末尾后,再判断一下前驱节点是不是头节点。如果是,说明是第一个加入同步队列的,就再去尝试获取锁。
  2. 如果获取锁成功,就把自己设置成头节点。
  3. 如果前驱节点不是头节点,或者获取锁失败,就逆序遍历同步队列,找到可以将自己唤醒的节点。
  4. 最后才放心地将自己挂起
// 追加到同步队列末尾后,再次尝试获取锁
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (; ; ) {
// 1. 找到前驱节点
final Node p = node.predecessor();
// 2. 如果前驱节点是头结点,就再次尝试获取锁
if (p == head && tryAcquire(arg)) {
// 3. 获取锁成功后,把自己设置为头节点
setHead(node);
p.next = null;
failed = false;
return interrupted;
}
// 4. 如果还是没有获取到锁,找到可以将自己唤醒的节点
if (shouldParkAfterFailedAcquire(p, node) &&
// 5. 最后才放心地将自己挂起
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}

再看一下shouldParkAfterFailedAcquire方法,是怎么找到将自己唤醒的节点的?为什么要找这个节点?

// 加入同步队列后,找到能将自己唤醒的节点
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
// 1. 如果前驱节点的状态已经是SIGNAL状态(释放锁后,需要唤醒后继节点),就无需操作了
if (ws == Node.SIGNAL)
return true;
// 2. 如果前驱节点的状态是已取消,就继续向前遍历
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 3. 找到了不是取消状态的节点,把该节点状态设置成SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}

从代码中可以很清楚的看到,目的就是为了找到不是取消状态的节点,并把该节点的状态设置成SIGNAL。

状态是SIGNAL的节点,释放锁后,需要唤醒其后继节点。

简单理解就是:小弟初来乍到,特意来知会老大一声,有好事,多通知小弟。

再看一下释放锁的逻辑。

4.2 释放锁

释放锁的流程如下:

释放锁的代码逻辑比较简单:

// 释放锁
public final boolean release(int arg) {
// 1. 先尝试释放锁,如果时候成功,则设置state-1,exclusiveOwnerThread=null(由子类实现)
if (tryRelease(arg)) {
Node h = head;
// 2. 如果同步队列中还有其他节点,就唤醒下一个节点
if (h != null && h.waitStatus != 0)
// 3. 唤醒其后继节点
unparkSuccessor(h);
return true;
}
return false;
}

再看一下唤醒后继节点的方法

// 唤醒后继节点
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
// 1. 如果头节点不是取消状态,就重置成初始状态
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0); Node s = node.next;
// 2. 如果后继节点是null或者是取消状态
if (s == null || s.waitStatus > 0) {
s = null;
// 3. 从队尾开始遍历,找到一个有效状态的节点
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
// 3. 唤醒这个有效节点
if (s != null)
LockSupport.unpark(s.thread);
}

4.3 await等待

await等待的流程:

持有锁的线程可以调用await方法,作用是:释放锁,并追加到条件队列末尾。

// 等待方法
public final void await() throws InterruptedException {
// 如果线程已中断,则中断
if (Thread.interrupted())
throw new InterruptedException();
// 1. 追加到条件队列末尾
Node node = addConditionWaiter();
// 2. 释放锁
int savedState = fullyRelease(node);
int interruptMode = 0;
// 3. 有可能刚加入条件队列就被转移到同步队列了,如果还在条件队列,就可以放心地挂起自己
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// 4. 如果已经转移到同步队列,就尝试获取锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
// 5. 清除条件队列中已取消的节点
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}

再看一下addConditionWaiter方法,是怎么追加到条件队列末尾的?

// 追加到条件队列末尾
private Node addConditionWaiter() {
Node t = lastWaiter;
// 1. 清除已取消的节点,找到有效节点
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
// 2. 创建Node节点,状态是-2(表示处于条件队列)
Node node = new Node(Thread.currentThread(), Node.CONDITION);
// 3. 追加到条件队列末尾
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}

4.4 signal唤醒

signal唤醒的流程:

唤醒条件队列的头节点,并追加到同步队列末尾。

// 唤醒条件队列的头节点
public final void signal() {
// 1. 只有持有锁的线程才能调用signal方法
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
// 2. 找到条件队列的头节点
Node first = firstWaiter;
if (first != null)
// 3. 开始唤醒
doSignal(first);
} // 实际的唤醒方法
private void doSignal(Node first) {
do {
// 4. 从条件队列中移除头节点
if ((firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
// 5. 使用死循环,一定要转移一个节点到同步队列
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}

到底是怎么转移到同步队列末尾的?

// 实际转移方法
final boolean transferForSignal(Node node) {
// 1. 把节点状态从CONDITION改成0
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false; // 2. 使用死循环的方式,追加到同步队列末尾(前面已经讲过)
Node p = enq(node);
int ws = p.waitStatus;
// 3. 把前驱节点状态设置SIGNAL(通知他,别忘了唤醒老弟)
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}

5. 总结

看完整个AQS的源码,是不是完全理解了AQS加锁、释放锁、以及同步队列和条件队列数据流转的逻辑了。

连AQS这么复杂的源码你都搞清楚了,下篇带你一块学习ReentrantLock源码,应该就轻松多了。

我是「一灯架构」,如果本文对你有帮助,欢迎各位小伙伴点赞、评论和关注,感谢各位老铁,我们下期见

硬核剖析Java锁底层AQS源码,深入理解底层架构设计的更多相关文章

  1. 硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理

    前提 很早之前就打算看一次JUC线程池ThreadPoolExecutor的源码实现,由于近段时间比较忙,一直没有时间整理出源码分析的文章.之前在分析扩展线程池实现可回调的Future时候曾经提到并发 ...

  2. AQS源码泛读,梳理设计流程(jdk8)

    一.AQS介绍 AQS(AbstractQueuedSynchronizer)抽象队列同步器,属于多线程编程的基本工具:JDK对其定义得很详细,并提供了多种常用的工具类(重入锁,读写锁,信号量,Cyc ...

  3. Java锁及AbstractQueuedSynchronizer源码分析

    一,Lock 二,关于锁的几个概念 三,ReentrantLock类图 四,几个重要的类 五,公平锁获取 5.1 lock 5.2 acquire 5.3 tryAcquire 5.3.1 hasQu ...

  4. Java HashSet和HashMap源码剖析

    转自: Java HashSet和HashMap源码剖析 总体介绍 之所以把HashSet和HashMap放在一起讲解,是因为二者在Java里有着相同的实现,前者仅仅是对后者做了一层包装,也就是说Ha ...

  5. AQS源码分析笔记

    经过昨晚的培训.对AQS源码的理解有所加强,现在写个小笔记记录一下 同样,还是先写个测试代码,debug走一遍流程, 然后再总结一番即可. 测试代码 import java.util.concurre ...

  6. AQS源码深入分析之独占模式-ReentrantLock锁特性详解

    本文基于JDK-8u261源码分析 相信大部分人知道AQS是因为ReentrantLock,ReentrantLock的底层是使用AQS来实现的.还有一部分人知道共享锁(Semaphore/Count ...

  7. 全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础

    AbstractQueuedSynchronizer(以下简称AQS)的内容确实有点多,博主考虑再三,还是决定把它拆成三期.原因有三,一是放入同一篇博客势必影响阅读体验,而是为了表达对这个伟大基础并发 ...

  8. 【转】Java集合:HashMap源码剖析

    Java集合:HashMap源码剖析   一.HashMap概述二.HashMap的数据结构三.HashMap源码分析     1.关键属性     2.构造方法     3.存储数据     4.调 ...

  9. 全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(二)资源的获取和释放

    上期的<全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础>中介绍了什么是AQS,以及AQS的基本结构.有了这些概念做铺垫之后,我们就可以正 ...

随机推荐

  1. 【manim】学习路径2-构建一些基础的图形,场景

    头文件引入 导入manim命名空间 from manim import * manim基本结构 这是一个最基本的manim结构,格式: from manim import * class 类的名字(S ...

  2. 【c语言简单算法】1-阶乘

    求n的阶乘 算法要求 从键盘输入一个数,求出这个数的阶乘 代码实现 #include main() { double result=1; size_t n; scanf("%d", ...

  3. Qt 创建按钮动画

    1 封装自定义按钮 myPushBttton 2 构造函数 (默认图片,按下后显示图片) 3 测试开始按钮 4 开始制作特效 5 zoom1 向下弹跳 6 zoom2 向上弹跳 代码如下 main.h ...

  4. Java语言(基础一)

    Java语言 Java的特性和优势 简单性(简单易学) 面向对象(一种思想 万物皆对象) 可移植性(一次编写到处运行 JVM) 高性能(及时编译) 分布式(网络分布式url) 动态性(反射机制) 多线 ...

  5. Elastic:使用Postman来访问需要账号密码的Elastic Stack

  6. k8s中节点级别的日志

    容器化应用程序写入到 stdout 和 stderr 中的任何信息,都将被容器引擎重定向到某个地方.例如,Docker 容器引擎将 stdout 和 stderr 这两个输出流重定向到 logging ...

  7. Docker搭建自己的Gitlab CI Runner

    转载自:https://cloud.tencent.com/developer/article/1010595 1.Gitlab CI介绍 CI:持续集成,我们通常使用CI来做一些自动化工作,比如程序 ...

  8. Java后端开发——美团(牛客)

    Java后端开发--美团(牛客) Java的基本数据类型,各自的字节数 ​ 老生常谈,不多说了. 类型 字节数 byte 1字节 short 2字节 int 4字节 long 8字节 float 4字 ...

  9. P4047 [JSOI2010]部落划分 方法记录

    原题链接 [JSOI2010]部落划分 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常 ...

  10. GitLab私有化部署 - CI/CD - 持续集成/交付/部署 - 源代码托管 & 自动化部署

    预期目标 源代码管理 借助GitLab实现源代码托管,私有化部署版本,创建项目,创建用户组,分配权限,项目的签入/牵出等. 自动化部署 源代码产生变更时(如签入),自动化编译并发布到指定服务器中部署, ...