题目:

电音之王


题解:

求数列前n项相乘并取模


思路:

①、这题的乘法是爆long long的,可以通过快速幂的思想去解决(按数位对其中的一个数进行剖分)。当然你的乘法会多出一个log的复杂度...

②、O(1)快速乘:一种O(1)复杂度求解整数相乘取模的思路(它对于64位的整型也是适用的):

  来自2009年国家集训队论文:骆可强:《论程序底层优化的一些方法与技巧》 (参考中附原文链接)

typedef long long ll;
#define MOL 123456789012345LL inline ll mul_mod_ll(ll a,ll b)
{
ll d = (ll)floor(a * (double)b / MOL + 0.5);
ll ret = a * b - d * MOL;
if(ret < ) ret += MOL;
return ret;
}

③、正解dls一句话题解(当然是看不懂了...)

  参考中附一篇Montgomery Modular Multiplication的博客(当然也是看不懂了...日文)

题解:(dls的代码)

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
// head typedef unsigned long long u64;
typedef __int128_t i128;
typedef __uint128_t u128;
int _,k;
u64 A0,A1,M0,M1,C,M; struct Mod64 {
Mod64():n_() {}
Mod64(u64 n):n_(init(n)) {}
static u64 init(u64 w) { return reduce(u128(w) * r2); }
static void set_mod(u64 m) {
mod=m; assert(mod&);
inv=m; rep(i,,) inv*=-inv*m;
r2=-u128(m)%m;
}
static u64 reduce(u128 x) {
u64 y=u64(x>>)-u64((u128(u64(x)*inv)*mod)>>);
return ll(y)<?y+mod:y;
}
Mod64& operator += (Mod64 rhs) { n_+=rhs.n_-mod; if (ll(n_)<) n_+=mod; return *this; }
Mod64 operator + (Mod64 rhs) const { return Mod64(*this)+=rhs; }
Mod64& operator -= (Mod64 rhs) { n_-=rhs.n_; if (ll(n_)<) n_+=mod; return *this; }
Mod64 operator - (Mod64 rhs) const { return Mod64(*this)-=rhs; }
Mod64& operator *= (Mod64 rhs) { n_=reduce(u128(n_)*rhs.n_); return *this; }
Mod64 operator * (Mod64 rhs) const { return Mod64(*this)*=rhs; }
u64 get() const { return reduce(n_); }
static u64 mod,inv,r2;
u64 n_;
};
u64 Mod64::mod,Mod64::inv,Mod64::r2; u64 pmod(u64 a,u64 b,u64 p) {
u64 d=(u64)floor(a*(long double)b/p+0.5);
ll ret=a*b-d*p;
if (ret<) ret+=p;
return ret;
} void bruteforce() {
u64 ans=;
for (int i=;i<=k;i++) {
ans=pmod(ans,A0,M);
u64 A2=pmod(M0,A1,M)+pmod(M1,A0,M)+C;
while (A2>=M) A2-=M;
A0=A1; A1=A2;
}
printf("%llu\n",ans);
} int main() {
for (scanf("%d",&_);_;_--) {
scanf("%llu%llu%llu%llu%llu%llu%d",&A0,&A1,&M0,&M1,&C,&M,&k);
Mod64::set_mod(M);
Mod64 a0(A0),a1(A1),m0(M0),m1(M1),c(C),ans(),a2();
for (int i=;i<=k;i++) {
ans=ans*a0;
a2=m0*a1+m1*a0+c;
a0=a1; a1=a2;
}
printf("%llu\n",ans.get());
}
}

参考:

论程序底层优化的一些方法与技巧

除算・剰余算の高速化

Modular arithmetic and Montgomery form 实现快速模乘的更多相关文章

  1. Modular Arithmetic ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Introduction Modular arithmetic is a fundamental tool in modern algebra systems. In conjunction wi ...

  2. tourist's modular arithmetic class

    #include <bits/stdc++.h> using namespace std; template <typename T> T inverse(T a, T m) ...

  3. 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)

    Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...

  4. BZOJ5118:Fib数列2(O1快速模)

    题意:输入N,输出fib(2^N)%1125899839733759.(P=1125899839733759是素数) 思路:欧拉降幂,因为可以表示为矩阵乘法,2^N在幂的位置,矩阵乘法也可以降幂,所以 ...

  5. PY个快速模

    既然这道题是数学题,那就用 PY 吧! 学点东西: print 可以和 c++ 中的 printf 一样快乐的输出格式 另外一点: 这道题可能数据不够强?想想应该有一个 \(0^0 ~\%~ k =0 ...

  6. 数学--数论--HDU1825(积性函数性质+和函数公式+快速模幂+非互质求逆元)

    As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...

  7. BNU 4356 ——A Simple But Difficult Problem——————【快速幂、模运算】

    A Simple But Difficult Problem Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO format: %l ...

  8. 快速幂模n运算

    模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...

  9. 模反元素 RSA Euler's totient function

    https://baike.baidu.com/item/模反元素/20417595 如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1.这时,b就 ...

随机推荐

  1. jQuery基础--选择器

    2. 选择器 2.1. 什么是jQuery选择器 jQuery选择器是jQuery为我们提供的一组方法,让我们更加方便的获取到页面中的元素.注意:jQuery选择器返回的是jQuery对象. jQue ...

  2. [BZOJ4151]The Cave

    Solution: ​ 假设现在在点1,有许多形如 (x, y, z) 的限制条件,那么对于一组限制,必须先走到 x, y 的 \(\frac{z-dis(x, y)}{2}\) 级祖先,叫这些点为限 ...

  3. 洛谷 P1892 [BOI2003]团伙(种类并查集)

    传送门 解题思路 用并查集f存朋友关系,一个数组e存的是敌人关系,是一个辅助数组,所以叫做种类并查集. 当p和q是朋友时,直接合并,但是当是敌人时,需要一些操作. 当p还没有敌人时(即p的敌人是自己) ...

  4. Centos6.5 使用YUM安装MariaDB

    1,第一步 [xxxxxx]$ cd /etc/yum.repos.d [xxxxxx]$ vi MariaDB.repo # MariaDB 10.0 CentOS repository list ...

  5. Ioc和DI之间的关系(依赖注入的核心概念)

    1.开篇闲话 由于之前做的很多项目都没接触到这个,后来到了另一个公司,他们的代码结构是基于领域驱动设计的,其中里面的对象都是通过依赖注入方式(Sprint.NET)实现的,也大致了解了哈,在网上搜了些 ...

  6. rpc - rpc 程序号数据库

    SYNOPSIS /etc/rpc DESCRIPTION rpc 文件列出了rpc 程序的可读名, 可以此代替rpc 程序号. 每行包含如下信息: 运行rpc 程序的服务名 rpc 程序号 别名 各 ...

  7. Kintex7 XC7K325T 板卡三剑客

    (226)基于Xilinx Kintex-7 FPGA K7 XC7K325T PCIeX8 四路光纤卡   (227)基于Xilinx Kintex-7 FPGA K7 XC7K325T的FMC U ...

  8. 微信小程序(13)--页面滚动到某个位置添加类效果

    微信小程序页面滚动到某个位置添加类,盒子置顶效果. <!-- vh,是指CSS中相对长度单位,表示相对视口高度(Viewport Height),1vh = % * 视口高度 --> &l ...

  9. python关键字global和nonlocal总结

    函数中使用全局变量 a = 100 b = 200 def func(): def sub(): return b return a + b + sub() 执行fun()后返回值为:500 a, b ...

  10. Linux修改密码指令

    1.在选择系统菜单界面,按 "e" 进入编辑模式 2.在以字符串“Linux16”开头的行,将光标移动到该行的结尾,然后输入“init=/bin/bash”,按 "Ctr ...