题目链接:https://vjudge.net/problem/POJ-1284

题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p-1}。

思路:题目的实质就是问p有多少原根。

  下面是百度对原根的解释:
    设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)
    假设一个数g是P的原根,那么g^i mod P的结果两两不同,且有 1<g<P, 0<i<P,归根到底就是g^(P-1) = 1 (mod P)当且仅当指数为P-1的时候成立.(这里P是素数).
    简单来说,g^i mod p ≠ g^j mod p (p为素数)//这句话就是满足的条件。
    其中i≠j且i, j介于1至(p-1)之间
    这个题目就是将原根的定义解释了一遍。
  
  有两点重要的原根性质
    1. 模m有原根的充要条件是m= 1,2,4,p,2p,p^n,其中p是奇质数,n是任意正整数。
    2. 当模m有原根时,它有φ(φ(m))个原根。

  某大牛的证明(没看懂...QAQ):

    {xi%p | 1 <= i <= p - 1} = {1,2,...,p-1} 等价于 {xi%(p-1) | 1 <= i <= p - 1} = {0,1,2,...,p-2},即为(p-1)的完全剩余系  

    若x,x2...x(p-1)是(p-1)的完全剩余系,

    根据定理,可以推出若gcd(x, p-1) = 1时, (1,x,...,x(p-2))也是(p-1)的完全剩余系

    因为若xi != xj (mod p-1),那么x*xi != x*xj (mod p-1),与条件m矛盾,所以 xi = xj (mod p-1),

    由此可以确定答案为eu(p-1)。

  知道答案是eu(p-1),代码就很好实现了,筛法打表65525以内的数的欧拉函数即可。

AC代码:

#include<cstdio>
using namespace std; int eu[],p; void eular(){
for(int i=;i<=;++i)
if(!eu[i])
for(int j=i;j<=;j+=i){
if(!eu[j]) eu[j]=j;
eu[j]=eu[j]/i*(i-);
}
} int main(){
eular();
while(~scanf("%d",&p)){
printf("%d\n",eu[p-]);
}
return ;
}

poj1284(欧拉函数+原根)的更多相关文章

  1. poj1284:欧拉函数+原根

    何为原根?由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a ...

  2. POJ 1284 Primitive Roots (欧拉函数+原根)

    <题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...

  3. POJ1284 Primitive Roots [欧拉函数,原根]

    题目传送门 Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5434   Accepted:  ...

  4. poj1284 && caioj 1159 欧拉函数1:原根

    这道题不知道这个定理很难做出来. 除非暴力找规律. 我原本找的时候出了问题 暴力找出的从13及以上的答案就有问题了 因为13的12次方会溢出 那么该怎么做? 快速幂派上用场. 把前几个素数的答案找出来 ...

  5. (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))

    /* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...

  6. 数学之欧拉函数 &几道poj欧拉题

    欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...

  7. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  8. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  9. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

随机推荐

  1. JAVA笔记3-this关键字

    1.          2.例题

  2. 【51nod 1824】染色游戏

    题目 有 n 个红球, m 个蓝球,从中取出 x 个红球和 y 个蓝球排成一排的得分是 rx⋅by ,其中 r0=b0=1 . 定义 f(t) 表示恰好取出 t 个球排成一排的所有可能局面的得分之和. ...

  3. ELK——集中式日志系统

    https://www.ibm.com/developerworks/cn/opensource/os-cn-elk/index.html 基本流程是 Shipper 负责从各种数据源里采集数据,然后 ...

  4. OpenCV笔记(6)(harris角点检测、背景建模)

    一.Harris角点 如上图所示,红色框AB都是平面,蓝色框CD都是边缘,而绿色框EF就是角点. 平面:框往X或Y抽移动,变化都很小. 边缘:框沿X或Y轴移动,其中一个变化很小,而另外一个变化比较大. ...

  5. TCP如何保证可靠传输

    TCP 协议如何保证可靠传输   一.综述 1.确认和重传:接收方收到报文就会确认,发送方发送一段时间后没有收到确认就重传. 2.数据校验 3.数据合理分片和排序: UDP:IP数据报大于1500字节 ...

  6. sql 建立索引之前计算区分度

    select cutomer_id,title,content from product_comment where audit_status=1 and product_id=1 and produ ...

  7. Oracle11g RAC+DG搭建

    项目环境准备 3.1虚拟机配置 版本选择 注意Linux操作系统.此次项目我选择的版本是Oracle Enterprise Linux 5.4 内存的设置 本人电脑物理内存8G,由于此次实验要开三台虚 ...

  8. Java中String.getBytes()

    在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组.这个表示在不通OS下,返回的东西不一样!  String.getBytes(String decode) ...

  9. vue跳转到指定位置

    document.querySelector(id).scrollIntoView(true)//跳转到顶部 window.scrollTo(0, 0)

  10. 关于Jdk7与Jdk8对Collections进行分组的区别

    先准备一点数据: public class User {    private Integer id;    private String type;    private String name;  ...