BZOJ 3238: [Ahoi2013]差异((单调栈+后缀数组)/(后缀树))
[传送门[(https://www.lydsy.com/JudgeOnline/problem.php?id=3238)
解题思路
首先原式可以把\(len\)那部分直接算出来,然后通过后缀数组求\(lcp\)。算\(\sum lcp\)的时候,刚开始傻了想要直接算贡献,结果越写越乱,后来想想只需要用单调栈把每个点的控制范围算出来即可,正着做一遍反着做一遍。注意还要考虑两个\(h[i]\)相邻并相等时的影响。还有一种比较自然的解法是后缀树,\(lcp\)其实就为两个点的\(lca\)的深度,所以建出后缀树后直接按拓扑序\(dp\)一下即可。
代码
后缀数组:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
const int MAXN = 500005;
typedef long long LL;
int n,m,height[MAXN],num,stk[MAXN],top,l[MAXN],r[MAXN];
int sa[MAXN],rk[MAXN],x[MAXN<<1],y[MAXN<<1],c[MAXN];
char s[MAXN];
LL ans;
inline void get_SA(){
for(int i=1;i<=n;i++) x[i]=s[i],c[x[i]]++;
for(int i=2;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i;i--) sa[c[x[i]]--]=i;
for(int k=1;k<=n;k<<=1){num=0;
for(int i=n-k+1;i<=n;i++) y[++num]=i;
for(int i=1;i<=n;i++) if(sa[i]>k) y[++num]=sa[i]-k;
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++) c[x[i]]++;
for(int i=2;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i;i--) sa[c[x[y[i]]]--]=y[i],y[i]=0;
swap(x,y);num=1;x[sa[1]]=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
if(num==n) break;m=num;
}
}
inline void get_height(){
for(int i=1;i<=n;i++) rk[sa[i]]=i;int j,k=0;
for(int i=1;i<=n;i++){
if(rk[i]==1) continue;
if(k) k--;j=sa[rk[i]-1];
while(i+k<=n && j+k<=n && s[i+k]==s[j+k]) k++;
height[rk[i]]=k;
}
}
void solve(){
for(int i=1;i<=n;i++){
while(top && height[i]<=height[stk[top]]) l[stk[top]]=i-1,top--;
if(height[i]) stk[++top]=i;
}
while(top) l[stk[top--]]=n;
for(int i=n;i;i--){
while(top && height[i]<height[stk[top]]) r[stk[top]]=i+1,top--;
if(height[i]) stk[++top]=i;
}
while(top) r[stk[top--]]=1;
for(int i=1;i<=n;i++) ans-=(LL)height[i]*(l[i]-i+1)*(i-r[i]+1)*2;
}
int main(){
scanf("%s",s+1);n=strlen(s+1);m='z';
get_SA();get_height();
// for(int i=1;i<=n;i++) cout<<sa[i]<<" ";cout<<endl;
// for(int i=1;i<=n;i++) cout<<height[i]<<" ";cout<<endl;
ans=(LL)n*(n-1)/2*(n+1);
solve();printf("%lld\n",ans);
return 0;
}
后缀树:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#define int long long
using namespace std;
const int MAXN = 500005<<1;
typedef long long LL;
char s[MAXN];
int n,siz[MAXN],lst,cnt;
int fa[MAXN],ch[MAXN][27],l[MAXN],a[MAXN],c[MAXN];
LL ans;
inline void Insert(int c){
int p=lst,np=++cnt;lst=np;l[np]=l[p]+1;
for(;p && !ch[p][c];p=fa[p]) ch[p][c]=np;
if(!p) fa[np]=1;
else{
int q=ch[p][c];
if(l[q]==l[p]+1) fa[np]=q;
else {
int nq=++cnt;l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
fa[nq]=fa[q];fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
}
}
siz[np]=1;
}
signed main(){
scanf("%s",s+1);n=strlen(s+1);lst=cnt=1;
for(int i=n;i;i--) Insert(s[i]-'a'+1);
ans=(LL)n*(n-1)/2*(n+1);
for(int i=1;i<=cnt;i++) c[l[i]]++;
for(int i=1;i<=cnt;i++) c[i]+=c[i-1];
for(int i=1;i<=cnt;i++) a[c[l[i]]--]=i;
for(int i=cnt;i;i--){
ans-=(LL)siz[a[i]]*siz[fa[a[i]]]*l[fa[a[i]]]*2;
siz[fa[a[i]]]+=siz[a[i]];
}
printf("%lld\n",ans);
return 0;
}
BZOJ 3238: [Ahoi2013]差异((单调栈+后缀数组)/(后缀树))的更多相关文章
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- bzoj 3238: [Ahoi2013]差异 -- 后缀数组
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- bzoj 3238 Ahoi2013 差异
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2357 Solved: 1067[Submit][Status ...
- BZOJ.3238.[AHOI2013]差异(后缀自动机 树形DP/后缀数组 单调栈)
题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1 ...
- ●BZOJ 3238 [Ahoi2013]差异
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3238 题解: 后缀数组套路深. 问题转化为求出任意两个后缀的LCP之和 在计算贡献时,各种不 ...
- 洛谷 P4248: bzoj 3238: [AHOI2013]差异
题目传送门:洛谷 P4248. 题意简述: 定义两个字符串 \(S\) 和 \(T\) 的差异 \(\operatorname{diff}(S,T)\) 为这两个串的长度之和减去两倍的这两个串的最长公 ...
- BZOJ 4826: [Hnoi2017]影魔 单调栈+可持久化线段树
Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样 的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个 ...
- BZOJ 3238 [Ahoi2013]差异(后缀自动机)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3238 [题目大意] 给出一个串,设T[i]表示从第i位开始的后缀, 求sum(len( ...
随机推荐
- 微信小程序点击顶部导航栏切换样式
类似这样的效果 <view class='helpCateList'> <!-- 类别 --> <scroll-view class='scroll-view' scro ...
- Linux的软件包管理
此博客的环境任意. 主题Linux的软件包管理 一软件管理工具 1编译安装 2rpm包管理 3yum管理 二软件运行和编译 1ABI 应用程序的二进制接口 ABI:Appl ...
- Spring 容器中bean的加载过程
bean 的加载过程大致可以分为以下几个步骤: 1.获取配置的资源文件 2.对获取到的xml资源文件进行解析 3.获取包装资源 4.解析处理包装之后的资源 5.加载 提取bean 并进行注册(添加到b ...
- 回调函数 和 promise对象,及封装API接口
1.回调函数:https://blog.csdn.net/baidu_32262373/article/details/54969696 注意:回调函数不一定需要用到 return.如果浏览器支持Pr ...
- 2.zabbix自定义模板
zabbix自定义模板 zbx_base_templates.xml <?xml version="1.0" encoding="UTF-8"?> ...
- [NOIP模拟测试31]题解
A.math 考场乱搞拿了95,2333. 考虑裴蜀定理:$ax+by=z$存在整数解,当且仅当$gcd(a,b)|z$. 那么如果某个数能够被拼出来,就必须满足所有$a_i$的$gcd$是它的因子. ...
- PHP基础知识总结(四) 留言板例子 知识应用
1.留言板显示页面:note.php <?php $host = "127.0.0.1"; $user = "root"; $pwd = "zs ...
- dotnet core项目的nuget存储路径
Where's the package location in aspnet core For project.json the nuget directory is in the user prof ...
- QTP学习笔记---datatable应用
DataTable应用1.定位数据行 DataTable.GetSheet() 2.获取当前行 GetCurrentRow3.获取指定行的值 getValueByRow = DataTable.Get ...
- eclipse中选取一列快捷键
eclipse中选取一列 比如选中下面的1 4 1 2 3 4 5 6 快捷键 alt+shift+拖动鼠标