题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=5161

题解

回顾一下以前用二分求 LIS 的方法:令 \(f[i]\) 表示长度为 \(i\) 的 LIS 的最后一位的最小值。可发现不管目前 DP 到了哪儿,这个东西永远是递增的。


关于 LIS 的题目的大都可以维护一些和这个东西有关的状态,所以我们考虑状压这个数组。因为这个数组中每一位都不重复,所以可以用 \(01\) 来状压成一个二进制数。

由于我们在转移状态的时候,不关系新来的数到底是几,只关心这个新来的数和之前的数的大小关系,所以我们可以修改之前的 \(f\) 的定义为最后一位是已经 DP 过的数中第几小的数。

这样,新插入一个数的时候,可以枚举它的大小的排名,然后替换掉它后一名的数,并把后面的数全部 \(+1\),这个可以通过二进制数的移位实现。

最后 \(dp[n][2^n - 1]\) 就是答案。


因为在第 \(i\) 位的时候,状态只需要枚举到 \(2^i\),所以总的复杂度为 \(O(n(2^0 + 2^1 + 2^2 + \cdots)) = O(n2^n)\)。

但是 \(O(n2^n)\) 在 \(n \leq 28\) 面前显得苍白无力。怎么办呢?

\(n = 28\) 的时候 \(28 \times 2^{28}\) 大概是 \(7e9\) 左右,一分钟以内可以跑完。所以,可以花一点出去 orz​ 别的神仙的时间(大概 \(2-3min\))来打一个表。

然后就可以通过这道题了。


正常代码

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} #define lowbit(x) ((x) & -(x)) const int N = 28 + 7;
const int M = (1 << 27) + 7;
const int P = 998244353; int n, S;
int dp[2][M], pcnt[M], suf[N]; inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
} inline void ycl() {
S = (1 << (n - 1)) - 1;
for (int s = 1; s <= S; ++s) pcnt[s] = pcnt[s ^ lowbit(s)] + 1;
} inline void work() {
ycl();
int now = 1, pp = 0;
dp[now][0] = 1;
for (int i = 1; i < n; ++i) {
std::swap(now, pp);
for (int s = 0; s < (1 << i); ++s) dp[now][s] = 0;
for (int sss = 0; sss < (1 << (i - 1)); ++sss) {
int pre = 0, s = sss << 1 | 1;
for (int j = i; j; --j) suf[j] = (s >> (j - 1)) & 1 ? j : suf[j + 1];
for (int j = 0; j <= i; ++j) {
if (j) pre += (s >> (j - 1)) & 1;
int ss, sta, p = suf[j + 1];
if (p) ss = s ^ (1 << (p - 1));
sta = (s & ((1 << j) - 1)) | ((ss & ~((1 << j) - 1)) << 1) | (1 << j);
sadd(dp[now][sta >> 1], dp[pp][sss]);
}
}
}
int ans = 0;
for (int i = 0; i <= S; ++i) sadd(ans, (ll)(pcnt[i] + 1) * dp[now][i] % P);
for (int i = 1; i <= n; ++i) ans = (ll)ans * fpow(i, P - 2) % P;
printf("%d\n", ans);
} inline void init() {
read(n);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

打表代码

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} #define lowbit(x) ((x) & -(x)) const int N = 28 + 7;
const int M = (1 << 27) + 7;
const int P = 998244353;
const int ans[] = {0, 1, 499122178, 2, 915057326, 540715694, 946945688, 422867403, 451091574, 317868537, 200489273, 976705134, 705376344, 662845575, 331522185, 228644314, 262819964, 686801362, 495111839, 947040129, 414835038, 696340671, 749077581, 301075008, 314644758, 102117126, 819818153, 273498600, 267588741}; int n, S;/*
int dp[2][M], pcnt[M], suf[N]; inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
} inline void ycl() {
S = (1 << (n - 1)) - 1;
for (int s = 1; s <= S; ++s) pcnt[s] = pcnt[s ^ lowbit(s)] + 1;
} inline void work() {
ycl();
int now = 1, pp = 0;
dp[now][0] = 1;
for (int i = 1; i < n; ++i) {
std::swap(now, pp);
for (int s = 0; s < (1 << i); ++s) dp[now][s] = 0;
for (int sss = 0; sss < (1 << (i - 1)); ++sss) {
int pre = 0, s = sss << 1 | 1;
for (int j = i; j; --j) suf[j] = (s >> (j - 1)) & 1 ? j : suf[j + 1];
for (int j = 0; j <= i; ++j) {
if (j) pre += (s >> (j - 1)) & 1;
int ss, sta, p = suf[j + 1];
if (p) ss = s ^ (1 << (p - 1));
sta = (s & ((1 << j) - 1)) | ((ss & ~((1 << j) - 1)) << 1) | (1 << j);
// dbg("i = %d, s = %d, j = %d, sta = %d, now = %d, pre = %d\n", i, s, j, sta, now, pp);
sadd(dp[now][sta >> 1], dp[pp][sss]);
}
}
}
int ans = 0;
for (int i = 0; i <= S; ++i) sadd(ans, (ll)(pcnt[i] + 1) * dp[now][i] % P);
for (int i = 1; i <= n; ++i) ans = (ll)ans * fpow(i, P - 2) % P;
printf("%d\n", ans);
}*/ inline void work() {
printf("%d\n", ans[n]);
} inline void init() {
read(n);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj5161 最长上升子序列 状压DP(DP 套 DP) + 打表的更多相关文章

  1. 【bzoj5161】最长上升子序列 状压dp+打表

    题目描述 现在有一个长度为n的随机排列,求它的最长上升子序列长度的期望. 为了避免精度误差,你只需要输出答案模998244353的余数. 输入 输入只包含一个正整数n.N<=28 输出 输出只包 ...

  2. BZOJ.3591.最长上升子序列(状压DP)

    BZOJ 题意:给出\(1\sim n\)的一个排列的一个最长上升子序列,求原排列可能的种类数. \(n\leq 15\). \(n\)很小,参照HDU 4352这道题,我们直接把求\(LIS\)时的 ...

  3. BZOJ 5161: 最长上升子序列 状压dp+查分

    好神啊 ~ 打表程序: #include <cstdio> #include <cstring> #include <algorithm> #define N 14 ...

  4. 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法

    1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答      ...

  5. 最长上升子序列(LIS经典变型) dp学习~5

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  6. 【洛谷4045】[JSOI2009] 密码(状压+AC自动机上DP)

    点此看题面 大致题意: 给你\(n\)个字符串,问你有多少个长度为\(L\)的字符串,使得这些字符串都是它的子串.若个数不大于\(42\),按字典序输出所有方案. 状压 显然,由于\(n\)很小,我们 ...

  7. 对最长公共子序列(LCS)等一系列DP问题的研究

    LIS问题: 设\(f[i]\)为以\(a[i]\)结尾的最长上升子序列长度,有: \[f[i]=f[j]+1(j<i&&a[j]<a[i])\] 可以用树状数组优化至\( ...

  8. 动态规划_基础_最长公共子序列_多种方法_递归/dp

    D: 魔法少女资格面试 题目描述 众所周知,魔法少女是一个低危高薪职业.随着近年来报考魔法少女的孩子们越来越多,魔法少女行业已经出现饱和现象!为了缓和魔法少女界的就业压力,魔法少女考核员丁丁妹决定增加 ...

  9. 从最长公共子序列问题理解动态规划算法(DP)

    一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...

随机推荐

  1. python 全栈开发,Day53(jQuery的介绍,jQuery的选择器,jQuery动画效果)

    01-jQuery的介绍 1.为什么要使用jQuery 在用js写代码时,会遇到一些问题: window.onload 事件有事件覆盖的问题,因此只能写一个事件. 代码容错性差. 浏览器兼容性问题. ...

  2. Anaconda概念和使用方法

    Anaconda概述 Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存.切 ...

  3. 使用MAC OS X进行PHP开发的一些建议和技巧

    原创作品,允许转载,转载时请务必以超链接形式标明转载自:线筝 本文链接地址: 使用Mac OS X进行PHP开发的一些建议和技巧 用Mac OS X作为开发机已经有一年多的时间了,在这里写下自己的一些 ...

  4. MySql常用语句总结更新

    1.Mysql修改字段的默认值: alter table tablename alter column drop default; (若本身存在默认值,则先删除) alter table tablen ...

  5. 125、TensorFlow计算图的执行

    # TensorFlow使用tf.Session类来表示客户端程序之间的链接 # 虽然一个在其他语言中相似的接口也是可以使用的,列如C++ runtime # 一个tf.Session对象提供了访问本 ...

  6. 【Visual Studio】 使用EF、 Linq2Sql快速创建数据交互层(一)

    项目伊始,创建数据库交互层代码是底层框架的首要任务.常用的做法包括手动编码.Hibernate或者动软之类的代码生成器,而多数人忽略了.Net环境下VS提供的两套非常好用的数据层工具. EF和Linq ...

  7. SqL语句基础之增删改查

    增查删改的SQL语句,如此的实用,下面我就来简单介绍一下它简单的用法. 1.什么是SQL? SQL是用于访问和处理数据库的标准的一种计算机语言. 2.SQL可以做什么?  (1)可以向数据库进行查询 ...

  8. AppiumLibrary库倒入后显示红色,日志报错:ImportError: cannot import name 'InvalidArgumentException'

    AppiumLibrary安装后,robotframe worke 倒入后一直显示红色,查看日志报错:ImportError: cannot import name 'InvalidArgumentE ...

  9. SQL Server 分页语句查询

    --查询第10页的数据(15条) SELECT TEMP1.* FROM( SELECT TOP 15 ROW_NUMBER() OVER(ORDER BY ID ASC) AS ROWID,* FR ...

  10. SQL常用语句之数据库的创建、删除以及属性的修改-篇幅1

    本篇文章主要总结了SQL Server 语句的使用和一些基础知识,因为目前我也正在学习,所以总结一下. 要使用数据库语句,首先就要知道数据库对象的结构: 通常情况下,如果不会引起混淆,可以直接使用对象 ...