传送门

写出式子,若存在 $a \in A$,$b \in B$,使得 $b+v=a$,那么此方案会产生冲突

即存在 $a \in A$,$b \in B$,使得 $v=a+(-b)$,设 $C=A+(-B)$ 那么有 $v \in C$,$+$ 表示闵可夫斯基和,$-$ 表示坐标符号取反

所有直接求出 $A$ 和 $-B$ 的闵可夫斯基和的凸包,然后查询 $v$ 是否在凸包内即可

注意直接求闵可夫斯基和的凸包可能会有一些平行的向量,为了方便查询,重新做一遍凸包即可

我的做法会把凸包坐标变化,所以查询的向量也要跟着变化

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
typedef double db;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+;
struct poi {
ll x,y;
poi (ll a=,ll b=) { x=a,y=b; }
inline poi operator + (const poi &tmp) const { return poi(x+tmp.x,y+tmp.y); }
inline poi operator - (const poi &tmp) const { return poi(x-tmp.x,y-tmp.y); }
inline bool operator < (const poi &tmp) const { return x!=tmp.x ? x<tmp.x : y<tmp.y; }
}A[N],B[N],C[N],st[N],sum;
inline ll Cross(poi A,poi B) { return A.x*B.y-A.y*B.x; }
inline db Dot(poi A,poi B) { return A.x*B.x+A.y*B.y; }
inline db Len(poi A) { return sqrt(Dot(A,A)); }
inline bool cmp(const poi &A,const poi &B) { return Cross(A,B)>||(Cross(A,B)==&&Len(A)<Len(B)); }
void Tubao(poi *P,int &tot)
{
sort(P+,P+tot+); sum=sum+P[];/*如果此时求的是C的凸包P[1]=(0,0)没有贡献*/ for(int i=tot;i>=;i--) P[i]=P[i]-P[];
sort(P+,P+tot+,cmp); int Top=;
for(int i=;i<=tot;st[++Top]=P[i],i++)
while(Top> && Cross(P[i]-st[Top-],st[Top]-st[Top-])>= ) Top--;
tot=Top; for(int i=;i<=tot;i++) P[i]=st[i];
}
int check(poi *P,int tot,poi A)
{
A=A-sum;
if(Cross(A,P[])>||Cross(P[tot],A)>) return ;
int pos=lower_bound(P+,P+tot+,A,cmp)-P-; if(pos==tot) return ;
return Cross(A-P[pos],P[pos+]-P[pos])<=;
}
int n,m,T,Q;
int main()
{
n=read(),m=read(),Q=read();
for(int i=;i<=n;i++) A[i].x=read(),A[i].y=read();
for(int i=;i<=m;i++) B[i].x=-read(),B[i].y=-read();
Tubao(A,n); Tubao(B,m);
int la=,lb=; C[++T]=A[]+B[];
while(la<=n||lb<=m)
{
poi p1=A[la%n+]+B[(lb-)%m+],p2=A[(la-)%n+]+B[lb%m+];
if(Cross(p1-C[T],p2-C[T])>=) la++,C[++T]=p1;
else lb++,C[++T]=p2;
}
Tubao(C,T);
for(int i=;i<=Q;i++)
{
int x=read(),y=read();
printf("%d\n",check(C,T,poi(x,y)));
}
return ;
}

BZOJ 5317: [Jsoi2018]部落战争的更多相关文章

  1. 【BZOJ5317】[JSOI2018]部落战争(凸包,闵可夫斯基和)

    [BZOJ5317][JSOI2018]部落战争(凸包,闵可夫斯基和) 题面 BZOJ 洛谷 题解 很明显我们只需要两个凸包\(A,B\). 假设询问给定的方向向量是\(v\). 那么现在就是判断\( ...

  2. 2019.02.21 bzoj5317: [Jsoi2018]部落战争(凸包+Minkowski和)

    传送门 题意:qqq次询问把一个凸包整体加一个向量(x,y)(x,y)(x,y)之后是否与另外一个凸包相交. 思路:转化一下发现只要会求A+B={v⃗=a⃗+b⃗∣a⃗∈A,b⃗∈B}A+B=\{\v ...

  3. BZOJ5317 JSOI2018部落战争(凸包)

    即询问凸包是否有交.这显然可以直接求半平面交,但是复杂度O(q(n+m)),且没有什么优化空间. 更直接地表示,即相当于询问是否存在点a∈A,b∈B,使得a+d=b.移项,得到d=b-a.可以发现等式 ...

  4. [BZOJ5317][JSOI2018]部落战争(闵可夫斯基和)

    对于点集$A$,$B$,闵可夫斯基和$C=\{(x1+x2,y1+y2)|(x1,x2)\in A,(y1,y2)\in B\}$.由此可知,对于两个凸包$A$,$B$的闵可夫斯基和$C$满足,$C$ ...

  5. BZOJ 2150: 部落战争 最大流

    2150: 部落战争 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php? ...

  6. BZOJ2150: 部落战争

    题解: 把每个点拆成入点和出点,因为必须经过一次且只能经过一次.所以在两个点之间连一条上界=下界=1的边. 然后再s到每个入点连边,每个出点向t连边,点与点之间... 求最小流就可以过了... (感觉 ...

  7. BZOJ-2150部落战争(最小路径覆盖)

    2150: 部落战争 Time Limit: 10 Sec  Memory Limit: 259 MB Description lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国 ...

  8. 「JSOI2018」战争

    「JSOI2018」战争 解题思路 我们需要每次求给一个凸包加上一个向量后是否与另外一个凸包相交,也就是说是否存在 \[ b\in B,(b+w)\in A \] 这里 \(A, B\) 表示凸包内部 ...

  9. 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】

    P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...

随机推荐

  1. PHP基础-表达式介绍

    表达式是 PHP 最重要的基石.在PHP 编程 中,几乎所写的任何东西都是一个表达式.简单但却最精确的定义一个表达式的方式就是“任何有值的东西”. 最基本的表达式形式是常量和变量.当键入“$a = 5 ...

  2. python Tkinter 组件

    Tkinter的提供各种控件,如按钮,标签和文本框,一个GUI应用程序中使用.这些控件通常被称为控件或者部件. 目前有15种Tkinter的部件.我们提出这些部件以及一个简短的介绍,在下面的表: 控件 ...

  3. java HTTP文件断点上传

    之前仿造uploadify写了一个HTML5版的文件上传插件,没看过的朋友可以点此先看一下~得到了不少朋友的好评,我自己也用在了项目中,不论是用户头像上传,还是各种媒体文件的上传,以及各种个性的业务需 ...

  4. UVa 122 Trees on the level (动态建树 && 层序遍历二叉树)

    题意  :输入一棵二叉树,你的任务是按从上到下.从左到右的顺序输出各个结点的值.每个结 点都按照从根结点到它的移动序列给出(L表示左,R表示右).在输入中,每个结点的左 括号和右括号之间没有空格,相邻 ...

  5. pyinstaller打包的exe太大?你需要嵌入式python玄学 拓展篇

    上篇我们讲到embedded版本的基础操作 CodingDog:pyinstaller打包的exe太大?你需要嵌入式python玄学 惊喜篇​zhuanlan.zhihu.com 可是却没有办法用pi ...

  6. Android开源SlidingMenu的使用

    一.SlidingMenu简介 SlidingMenu是最常用的几个开源项目之一. GitHub上的开源项目Slidingmenu提供了最佳的实现:定制灵活.各种阴影和渐变以及动画的滑动效果都不错.不 ...

  7. Java网络编程之Netty服务端ChannelOption.SO_BACKLOG配置

    ChannelOption.SO_BACKLOG对应的是tcp/ip协议listen函数中的backlog参数,函数listen(int socketfd,int backlog)用来初始化服务端可连 ...

  8. C# 异步编程,async与await的简单学习

    前提声明:C# 5.0 .NET Framework 4.5 2012-08-15 异步和等待(async和await).调用方信息(Caller Information)  (C#版本与.NET版本 ...

  9. sqli-labs(20)

    0X01 试探一下 这是登录成功的页面 这里题目高速我们是基于cookie的注入 0X01抓包试探 这里登陆的时候有两个包 我们要含有cookie的那个包 0X02试探判断是否cookie存在注入 C ...

  10. 运行Spark官方提供的例子

    去spark官网把spark下载下来: https://spark.apache.org/downloads.html 解压,可以看下目录: 其中examples目录下提供了java,scala,py ...