题意:给n(n<=15)种宝物宝物有价值w且每个宝物有一个前置宝物(即你必须先吃过它的所有前置宝物至少一次才能吃该宝物),共有m轮游戏,每一轮会在n种宝物等概率选一个出来,因为宝物价值可正可负你可以选择吃掉或者不吃,问m轮后你能获得的最大价值。

解法:这道题挺有意思的。看到n<=15容易想到用状压DP,于是我的第一想法是因为

但是此题起点是一定的但是终点不一定,所以从终点往回推可能会简单一些,于是设dp[x][S]代表1~x-1轮的状态为S,x~m轮的最大期望为dp[x][S] 。一定要重点注意这个状态的设计,这样设计状态会使得状态转移方程也比较好写:首先是对于每一个dp[i][j]要枚举k代表在此状态下等概率发的牌是第k种宝物

dp[i][j]+=max(dp[i+1][j|(1<<k-1)]+w[k],dp[i+1][j]);  (k在状态j下能吃,选择吃或不吃)

dp[i][j]+=dp[i+1][j]; (k在状态下不能吃,没得选择,肯定不能吃)

加完之后是期望和,那么dp[i][j]/=n;  代表期望。

初始化dp[m+1][]=0 ,答案就是dp[1][0]。

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=;
int n,m,w[N];
vector<int> G[N];
double dp[][<<N]; //dp[x][S]代表1~x-1轮的状态为S,x~m轮的最大期望为dp[x][S] bool check(int x,int S) {
for (int i=;i<G[x].size();i++) {
int y=G[x][i];
if ((S&(<<(y-)))==) return ;
}
return ;
} int main()
{
cin>>m>>n;
for (int i=;i<=n;i++) {
scanf("%d",&w[i]); int t;
while (scanf("%d",&t) && t) G[i].push_back(t);
} for (int i=m;i;i--)
for (int j=;j<(<<n);j++) {
for (int k=;k<=n;k++)
if (check(k,j)) dp[i][j]+=max(dp[i+][j|(<<k-)]+w[k],dp[i+][j]);
else dp[i][j]+=dp[i+][j];
dp[i][j]/=(double)n;
}
printf("%.6lf\n",dp[][]);
return ;
}

BZOJ1076/Luogu2473 奖励关(SCOI2008)状压DP+期望DP的更多相关文章

  1. BZOJ_1076_[SCOI2008]奖励关_状压DP

    BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...

  2. 【BZOJ1076】奖励关(动态规划,数学期望)

    [BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期 ...

  3. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  4. BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  5. 【BZOJ1076】[SCOI2008] 奖励关(状压DP)

    点此看题面 大致题意:总共有\(n\)个宝物和\(k\)个回合,每个回合系统将随机抛出一个宝物(抛出每个宝物的概率皆为\(1/n\)),吃掉一个宝物可以获得一定的积分(积分可能为负),而吃掉某个宝物有 ...

  6. 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...

  7. P4547 [THUWC2017]随机二分图(状压,期望DP)

    期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...

  8. bzoj 1076: [SCOI2008]奖励关【状压dp+概率dp】

    设f[i][s]为前i步,选的礼物集合为s的方案数,然而并不会转移-- 看了hzwer的blog,发现要倒着转移,然后答案就是f[1][0] 妙啊 #include<iostream> # ...

  9. [SCOI2008]奖励关_状压动归_数学期望

    Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 20; dou ...

随机推荐

  1. [BZOJ2600] ricehub

    问题描述 乡间有一条笔直而长的路称为"米道".沿着这条米道上 R 块稻田,每块稻田的坐标均为一个 1 到 L 之间(含 1 和 L)的整数.这些稻田按照坐标以不减的顺序给出,即对于 ...

  2. sublime px转rem插件

    http://www.cnblogs.com/phoebewang00/p/5593699.html lime 插件- px 转rem   一个CSS的px值转rem值的Sublime Text 3自 ...

  3. [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]

    [luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...

  4. 【2019ICPC西安邀请赛】J.And And And(点分治,贡献)

    题意:给定一棵n个点带边权的树,定义每条路径的值为路径上边权的异或和 如果一条路径的值为0,其对答案的贡献为所有包含这条路径的路径条数 求答案膜1e9+7 n<=1e5,0<=边权< ...

  5. Milking Grid poj2185

    Milking Grid POJ - 2185 时限: 3000MS   内存: 65536KB   64位IO格式: %I64d & %I64u 提交 状态 已开启划词翻译 问题描述 Eve ...

  6. [CSP-S模拟测试]:Dinner(二分)

    题目描述 清儿今天请好朋友们吃饭,一共$N$个人坐在坐在圆桌旁.吃饭的第一步当然是点餐了.服务员拿来了$M$份菜单.第$i$个人阅读菜单并点出自己喜欢的菜需要花费时间$T_i$.当一个人点完菜之后,就 ...

  7. MatrixTraceTransform主要逻辑在transform方法中

    @Override public void transform(TransformInvocation transformInvocation) throws TransformException, ...

  8. 2017数据科学报告:机器学习工程师年薪最高,Python最常用

    2017数据科学报告:机器学习工程师年薪最高,Python最常用 2017-11-03 11:05 数据平台 Kaggle 近日发布了2017 机器学习及数据科学调查报告,针对最受欢迎的编程语言.不同 ...

  9. JavaScript浅析

    目录 JacaScript概述 ECMAScript和JavaScript的关系 ECMAScript的历史: JavaScript的引入方式: 引入额外的JS文件: JavaScript的语言规范: ...

  10. linux暴露端口可以被外部访问

    linux暴露端口可以被外部访问,把端口号换成要暴露的端口:/sbin/iptables -I INPUT -p tcp --dport 3306 -j ACCEPT Centos 7 开启端口Cen ...