一、数组方法

创建数组:arange()创建一维数组;array()创建一维或多维数组,其参数是类似于数组的对象,如列表等

反过来转换则可以使用numpy.ndarray.tolist()函数,如a.tolist()

创建数组:np.zeros((2,3)),或者np.ones((2,3)),参数是一个元组分别表示行数和列数

对应元素相乘,a * b,得到一个新的矩阵,形状要一致;但是允许a是向量而b是矩阵,a的列数必须等于b的列数,a与每个行向量对应元素相乘得到行向量。

+ -  / 与 * 的运算规则相同。

数学上定义的矩阵乘法 np.dot(a, b)。如果形状不匹配会报错;但是允许允许a和b都是向量,返回两个向量的内积。只要有一个参数不是向量,就应用矩阵乘法。

(PS:总之就是,向量很特殊,在运算中可以自由转置而不会出错,运算的返回值如果维度为1,也一律用行向量[]表示)

读取数组元素:如a[0],a[0,0]

数组变形:如b=a.reshape(2,3,4)将得到原数组变为2*3*4的三维数组后的数组;或是a.shape=(2,3,4)或a.resize(2,3,4)直接改变数组a的形状

数组组合:水平组合hstack((a,b))或concatenate((a,b),axis=1);垂直组合vstack((a,b))或concatenate((a,b),axis=0);深度组合dstack((a,b))

数组分割(与数组组合相反):分别有hsplit,vsplit,dsplit,split(split与concatenate相对应)

将np数组变为py列表:a.tolist()

数组排序(小到大):列排列np.msort(a),行排列np.sort(a),np.argsort(a)排序后返回下标

复数排序:np.sort_complex(a)按先实部后虚部排序

数组的插入:np.searchsorted(a,b)将b插入原有序数组a,并返回插入元素的索引值

类型转换:如a.astype(int),np的数据类型比py丰富,且每种类型都有转换方法

条件查找,返回满足条件的数组元素的索引值:np.where(条件)

条件查找,返回下标:np.argwhere(条件)

条件查找,返回满足条件的数组元素:np.extract([条件],a)

根据b中元素作为索引,查找a中对应元素:np.take(a,b)一维

数组中最小最大元素的索引:np.argmin(a),np.argmax(a)

多个数组的对应位置上元素大小的比较:np.maximum(a,b,c,…..)返回每个索引位置上的最大值,np.minimum(…….)相反

将a中元素都置为b:a.fill(b)

每个数组元素的指数:np.exp(a)

生成等差行向量:如np.linspace(1,6,10)则得到1到6之间的均匀分布,总共返回10个数

求余:np.mod(a,n)相当于a%n,np.fmod(a,n)仍为求余且余数的正负由a决定

计算平均值:np.mean(a)

计算最大值:amax(a, axis=None, out=None, keepdims=False) 。Return the maximum of an array or maximum along an axis.

计算加权平均值:np.average(a,b),其中b是权重

计算数组的极差:np.pth(a)=max(a)-min(a)

计算方差(总体方差):np.var(a)

标准差:np.std(a)

算术平方根,a为浮点数类型:np.sqrt(a)

对数:np.log(a)

修剪数组,将数组中小于x的数均换为x,大于y的数均换为y:a.clip(x,y)

所有数组元素乘积:a.prod()

数组元素的累积乘积:a.cumprod()

数组元素的符号:np.sign(a),返回数组中各元素的正负符号,用1和-1表示

数组元素分类:np.piecewise(a,[条件],[返回值]),分段给定取值,根据判断条件给元素分类,并返回设定的返回值。

判断两数组是否相等: np.array_equal(a,b)

判断数组元素是否为实数: np.isreal(a)

去除数组中首尾为0的元素:np.trim_zeros(a)

对浮点数取整,但不改变浮点数类型:np.rint(a)

二、数组属性

1.获取数组每一维度的大小:a.shape

2.获取数组维度:a.ndim

3.元素个数:a.size

4.数组元素在内存中的字节数:a.itemsize

5.数组字节数:a.nbytes==a.size*a.itemsize

6.数组元素覆盖:a.flat=1,则a中数组元素都被1覆盖

7.数组转置:a.T

不能求逆、求协方差、迹等,不适用于复杂科学计算,可以将array转换成matrix。

三、矩阵方法

创建矩阵:np.mat(‘…’)通过字符串格式创建,np.mat(a)通过array数组创建,也可用matrix或bmat函数创建

matrix不会自动转换行列向量。matrix的所有运算默认都是数学上定义的矩阵运算,除非用mutiply函数实现点乘。

创建复合矩阵:np.bmat(‘A B’,’AB’),用A和B创建复合矩阵AB(字符串格式)

创建n*n维单位矩阵:np.eye(n)

矩阵的转置:A.T

矩阵的逆矩阵:A.I

计算协方差矩阵:np.cov(x),np.cov(x,y)

计算矩阵的迹(对角线元素和):a.trace()

相关系数:np.corrcoef(x,y)

给出对角线元素:a.diagonal()

四、线性代数

估计线性模型中的系数:a=np.linalg.lstsq(x,b),有b=a*x

求方阵的逆矩阵:np.linalg.inv(A)

求广义逆矩阵:np.linalg.pinv(A)

求矩阵的行列式:np.linalg.det(A)

解形如AX=b的线性方程组:np.linalg.solve(A,b)

求矩阵的特征值:np.linalg.eigvals(A)

求特征值和特征向量:np.linalg.eig(A)

Svd分解:np.linalg.svd(A)

五、概率分布

产生二项分布的随机数:np.random.binomial(n,p,size=…),其中n,p,size分别是每轮试验次数、概率、轮数

产生超几何分布随机数:np.random.hypergeometric(n1,n2,n,size=…),其中参数意义分别是物件1总量、物件2总量、每次采样数、试验次数

产生N个正态分布的随机数:np.random.normal(均值,标准差,N)

产生N个对数正态分布的随机数:np.random.lognormal(mean,sigma,N)

六、多项式

多项式拟合:poly= np.polyfit(x,a,n),拟合点集a得到n级多项式,其中x为横轴长度,返回多项式的系数

多项式求导函数:np.polyder(poly),返回导函数的系数

得到多项式的n阶导函数:多项式.deriv(m = n)

多项式求根:np.roots(poly)

多项式在某点上的值:np.polyval(poly,x[n]),返回poly多项式在横轴点上x[n]上的值

两个多项式做差运算: np.polysub(a,b)

Matpoltlib简单绘图方法

引入简单绘图的包import matplotlib.pyplot as plt,最后用plt.show()显示图像

基本画图方法:plt.plot(x,y),plt.xlabel(‘x’),plt.ylabel(‘y’),plt.title(‘…’)

子图:plt.subplot(abc),其中abc分别表示子图行数、列数、序号

创建绘图组件的顶层容器:fig = plt.figure()

添加子图:ax = fig.add_subplot(abc)

设置横轴上的主定位器:ax.xaxis.set_major_locator(…)

绘制方图:plt.hist(a,b),a为长方形的左横坐标值,b为柱高

绘制散点图:plt.scatter(x,y,c = ‘..’,s = ..),c表示颜色,s表示大小

添加网格线:plt.grid(True)

添加注释:如ax.annotate('x', xy=xpoint, textcoords='offsetpoints',xytext=(-50, 30), arrowprops=dict(arrowstyle="->"))

增加图例:如plt.legend(loc='best', fancybox=True)

对坐标取对数:横坐标plt.semilogx(),纵坐标plt.semilogy(),横纵同时plt.loglog()

numpy知识点总结的更多相关文章

  1. numpy知识点

    1.nonzero 对于一维数据来说,将返回符合条件的 下标 >>> b1 = np.array([True, False, True, False]) >>> n ...

  2. 数据分析第三篇:Numpy知识点

    Numpy 将字符型数据转为datetime import numpy as np f = np.array([','2019-01-01','2019-01-02 01:01:01']) # 把f数 ...

  3. numpy常用功能总结、python格式化输入输出

    #coding:utf-8 #author:徐卜灵 ##################### #由于在各大公司笔试的时候总是会遇到一些格式化输入输出数据,今天就来总结一下. #结合numpy来处理数 ...

  4. 【深度学习】吴恩达网易公开课练习(class1 week2)

    知识点汇总 作业内容:用logistic回归对猫进行分类 numpy知识点: 查看矩阵维度: x.shape 初始化0矩阵: np.zeros((dim1, dim2)) 去掉矩阵中大小是1的维度: ...

  5. 数据分析-Numpy-Pandas

    补充上一篇未完待续的Numpy知识点 索引和切片 数组和标量(数字)之间运算 li1 = [ [1,2,3], [4,5,6] ] a = np.array(li1) a * 2 运行结果: arra ...

  6. numpy库中的知识点——积累

    下面是一些杂碎的知识点: 首先我们说说多维数组: 数组的属性: ndarray.ndim, 表示数组的秩是多少: ndarray.shape,返回数组的形状: ndarray.size,数组元素的总个 ...

  7. python及pandas,numpy等知识点技巧点学习笔记

    python和java,.net,php web平台交互最好使用web通信方式,不要使用Jypython,IronPython,这样的好处是能够保持程序模块化,解耦性好 python允许使用'''.. ...

  8. numpy细碎知识点

    np.random.rand() 基于python自带模块random的random函数的一个延伸吧,生成指定数量的列表 np.random.rand(a,b) 参数a,b均为整型,生成含有a个元素的 ...

  9. numpy常用知识点备忘

    常用函数 a.max(axis=0) a.max(axis=1) a.argmax(axis=1) : 每列的最大值(在行方向找最大值).每行的最大值(在列方向找对大致).最大值的坐标 sum()求和 ...

随机推荐

  1. 【leetcode】1047. Remove All Adjacent Duplicates In String

    题目如下: Given a string S of lowercase letters, a duplicate removal consists of choosing two adjacent a ...

  2. vue兄弟组件之前传信

    1.使用vuex 2.子传父,父传子 3.使用中央事件总线 1.新建一个js文件,然后引入vue 实例化vue 最后暴露这个实例 2.在要用的组件内引入这个组件 3.通过vueEmit.$emit(' ...

  3. Angular:实现组件间双向数据绑定

    学过Angular的同学都知道,输入框通过[(ngModel)]实现双向数据绑定,那么父子组件间能不能实现双向数据绑定呢?答案是肯定的. Angular中,我们常常需要通过方括号[]和圆括号()实现组 ...

  4. luoguP3806 【模板】点分治1

    #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #define ...

  5. Jenkins报错:该Jenkins实例似乎已离线

    解决方法: 1.保留此离线页面,重新开启一个浏览器tab标签页 2.输入输入网址http://localhost:8080/pluginManager/advanced 3.进入该页面最底下,找到[升 ...

  6. 攻防世界 | string

    #encoding=utf-8 #!usr/bin/python from pwn import * io = remote('111.198.29.45',42643) io.recvuntil(& ...

  7. [CSP-S模拟测试]:Dash Speed(线段树+并查集+LCA)

    题目描述 比特山是比特镇的飙车圣地.在比特山上一共有$n$个广场,编号依次为$1$到$n$,这些广场之间通过$n−1$条双向车道直接或间接地连接在一起,形成了一棵树的结构. 因为每条车道的修建时间以及 ...

  8. 问候 UEditor 的大爷

    记录该日志的时间是2015年2月1日. 先给出 UEditor 项目的首页,它是一款由百度开发的开源富文本编辑器,关于它的介绍,大家可以查看百度百科. UEditor - 首页http://uedit ...

  9. js 通过浏览器直接打开应用程序(IOS,Android)

    实现效果 如下图所示,在手机浏览器中访问京东的手机版网站(m.jd.com),顶部会有一个广告图,点击这个广告图,如果手机上已经安装了京东App,则直接打开,如果没有安装,则开始下载. 实现方式 1. ...

  10. 关于JS的面向对象的思考和总结

    面向对象编程的概念和原理 1.面向对象编程是什么 它是用抽象的方式创建基于现实世界模型的编程模式(将数据和程序指令组合到对象中) 2.面向对象编程的目的 在编程中促进更好的灵活性和可维护性,在大型软件 ...