12位ADC是一种逐次逼近型模拟数字数字转换器。它有多达18个通道,可测量16个外部和2个内部信号源。ADC的输入时钟不得超过14MHZ,它是由PCLK2经分频产生。如果被ADC转换的模拟电压低于低阀值或高于高阀值,AWD模拟看门狗状态位被设置。

ADC通常要与DMA一起使用 这里只是简单的用库配置ADC 不断扫描来实现ADC的应用。

配置DMA:

void DMA_Config(void)
{
DMA_InitTypeDef DMA_InitStructure;//定义DMA初始化结构体
DMA_DeInit(DMA_Channel1);//复位DMA通道1
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; //定义 DMA通道外设基地址=ADC1_DR_Address
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&ADC_ConvertedValue; //定义DMA通道存储器地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;//指定外设为源地址
DMA_InitStructure.DMA_BufferSize = ;//定义DMA缓冲区大小1
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//当前外设寄存器地址不变
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;//当前存储器地址不变
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;//定义外设数据宽度16位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //定义存储器数据宽度16位
  DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;//DMA通道操作模式位环形缓冲模式
  DMA_InitStructure.DMA_Priority = DMA_Priority_High;//DMA通道优先级高
  DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;//禁止DMA通道存储器到存储器传输
  DMA_Init(DMA_Channel1, &DMA_InitStructure);//初始化DMA通道1
  DMA_Cmd(DMA_Channel1, ENABLE); //使能DMA通道1
}

配置ADC的运行:

void ADC_Config(void)
{
ADC_InitTypeDef ADC_InitStructure;//定义ADC初始化结构体变量
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;//ADC1和ADC2工作在独立模式
ADC_InitStructure.ADC_ScanConvMode = ENABLE; //使能扫描
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;//ADC转换工作在连续模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;//有软件控制转换
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;//转换数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = ;//转换通道为通道1
ADC_Init(ADC1, &ADC_InitStructure); //初始化ADC
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, , ADC_SampleTime_28Cycles5); //ADC1选择信道14,音序器等级1,采样时间239.5个周期
ADC_DMACmd(ADC1, ENABLE);//使能ADC1模块DMA
ADC_Cmd(ADC1, ENABLE);//使能ADC1
ADC_ResetCalibration(ADC1); //重置ADC1校准寄存器
while(ADC_GetResetCalibrationStatus(ADC1));//等待ADC1校准重置完成
ADC_StartCalibration(ADC1);//开始ADC1校准
while(ADC_GetCalibrationStatus(ADC1));//等待ADC1校准完成
ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能ADC1软件开始转换
}

(1)   第一个参数是ADC_Mode,这里设置为独立模式:

ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;

在这个模式下,双ADC不能同步,每个ADC接口独立工作。所以如果不需要ADC同步或者只是用了一个ADC的时候,就应该设成独立模式了。

(2)   第二个参数是ADC_ScanConvMode,这里设置为DISABLE。

ADC_InitStructure.ADC_ScanConvMode = DISABLE;

如果只是用了一个通道的话,DISABLE就可以了,如果使用了多个通道的话,则必须将其设置为ENABLE。

(3)   第三个参数是ADC_ContinuousConvMode,这里设置为ENABLE,即连续转换。如果设置为DISABLE,则是单次转换。两者的区别在于连续转换直到所有的数据转换完成后才停止转换,而单次转换则只转换一次数据就停止,要再次触发转换才可以。所以如果需要一次性采集1024个数据或者更多,则采用连续转换。

(4)   第四个参数是ADC_ExternalTrigConv,即选择外部触发模式。这里只讲三种:

1、第一种是最简单的软件触发,参数为ADC_ExternalTrigConv_None。设置好后还要记得调用库函数:

ADC_SoftwareStartConvCmd(ADC1, ENABLE);

这样触发才会启动。

2、第二种是定时器通道输出触发。共有这几种:ADC_ExternalTrigConv_T1_CC1、ADC_ExternalTrigConv_T1_CC2、ADC_ExternalTrigConv_T2_CC2、

ADC_ExternalTrigConv_T3_T以及ADC_ExternalTrigConv_T4_CC4。定时器输出触发比较麻烦,还需要设置相应的定时器。以

ADC_ExternalTrigConv_T2_CC2触发为例设置相应的定时器:

void TIM2_Configuration(void){
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_TimeBaseStructure.TIM_Prescaler = ;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = 0XFF;
TIM_TimeBaseStructure.TIM_ClockDivision = ;
TIM_TimeBaseStructure.TIM_RepetitionCounter = ;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0X7F;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OC2Init(TIM2, &TIM_OCInitStructure);
TIM_Cmd(TIM2, ENABLE);
TIM_CtrlPWMOutputs(TIM2, ENABLE);
}

这样设置之后就可以用定时器2的输出触发了,至于触发的周期,设置TIM2的时间即可。这里不再赘述。

3、第三种是外部引脚触发,对于规则通道,选择EXTI线11和TIM8_TRGO作为外部触发事件;而注入通道组则选择EXTI线15和TIM8_CC4作为外部触发事件。

(5)   第五个参数是ADC_DataAlign,这里设置为ADC_DataAlign_Right右对齐方式。建议采用右对齐方式,因为这样处理数据会比较方便。当然如果要从高位开始传输数据,那么采用左对齐优势就明显了。

(6)   第六个参数是ADC_NbrOfChannel,顾名思义:通道的数量。要是到多个通道采集数据的话就得设置一下这个参数。此外在规则通道组的配置函数中也许将各个通道的顺序定义一下,如:

 ADC_RegularChannelConfig(ADC1,ADC_Channel_13,,ADC_SampleTime_13Cycles5);
ADC_RegularChannelConfig(ADC1,ADC_Channel_14,,ADC_SampleTime_13Cycles5);

多通道数据传输时有一点还要注意:若一个数组为ADC_ValueTab[4],且设置了两个通道:通道1和通道2,则转换结束后,ADC_ValueTab[0]和ADC_ValueTab[2]存储的是通道1的数据,而ADC_ValueTab[1]和ADC_ValueTab[3]存储的是通道2的数据。如果数组容量大则依次类推。

补充一点:在使用DMA传输数据的时候,需要设置外设地址和存储器地址,外设地址当然就是ADC的地址了,而存储器的地址如果使用8位数据的话,存储器必须定义为8位缓冲区;如果使用16位数据格式的话,存储器则为16位缓冲器,不可定义为32位或更多,否则,数据将出错。

STM32 ADC基础与多通道采样的更多相关文章

  1. STM32 ADC多通道规则采样和注入采样

    layout: post tags: [STM32] comments: true 文章目录 layout: post tags: [STM32] comments: true 什么是ADC? STM ...

  2. 关于Stm32定时器+ADC+DMA进行AD采样的实现

    Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1.使用定时器中断每隔一定时间进 ...

  3. STM32 ADC多通道转换DMA模式与非DMA模式两种方法(HAL库)

    一.非DMA模式(转) 说明:这个是自己刚做的时候百度出来的,不是我自己做出来的,因为感觉有用就保存下来做学习用,原文链接:https://blog.csdn.net/qq_24815615/arti ...

  4. 【STM32H7教程】第46章 STM32H7的ADC应用之DMA方式多通道采样

    完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第46章       STM32H7的ADC应用之DMA方式多 ...

  5. Hi3518EV200平台ADC多通道采样

    Hi3518EV200平台ADC多通道采样流程 Hi3518EV200 ADC 本文针对Hi3518EV200平台处理器,通过ADC单次采样方式,实现对多通道(1~4通道)ADC进行采样控制.本文仅仅 ...

  6. STM32 ADC 采样 频率的确定

    一 STM32 ADC 采样频率的确定 1.       : 先看一些资料,确定一下ADC 的时钟: (1),由时钟控制器提供的ADCCLK 时钟和PCLK2(APB2 时钟)同步.CLK 控制器为A ...

  7. STM32 ADC多通道转换

    描述:用ADC连续采集11路模拟信号,并由DMA传输到内存.ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ.在每次转换结束后,由DMA循环将转换的数据传输到内存中.ADC可以连续采集N ...

  8. STM32 ADC详细篇(基于HAL库)

    一.基础认识 ADC就是模数转换,即将模拟量转换为数字量 l  分辨率,读出的数据的长度,如8位就是最大值为255的意思,即范围[0,255],12位就是最大值为4096,即范围[0,4096] l  ...

  9. STM32.ADC

    ADC实验 原理图: 1.ADC配置函数 /* enable adc1 and config adc1 to dma mode */ ADC1_Init(); /** * @brief ADC1初始化 ...

随机推荐

  1. UVA-10600.Contest and Blackout.(Kruskal + 次小生成树)

    题目链接 本题思路:模版的次小生成树问题,输出MST and Second_MST的值. 参考代码: #include <cstdio> #include <cstring> ...

  2. ML5238电池管理芯片笔记

          根据公司需要开发了以ML5238电池管理芯片+STM8S为核心的电池管理系统.由于前期对BMS系统还是了解甚少,开发起来也遇到了不少困难.再开发管理系统的同时,我也开发了管理系统的上位机, ...

  3. [SPOJ]Count on a tree II(树上莫队)

    树上莫队模板题. 使用欧拉序将树上路径转化为普通区间. 之后莫队维护即可.不要忘记特判LCA #include<iostream> #include<cstdio> #incl ...

  4. javascript Math取整&获取随机数

    1.方法介绍 Math.ceil(n) 上取整,大于等于n返回与它最接近的整数 Math.floor(n) 下取整,小于等于n返回与它最接近的整数 Math.round(n) 四舍五入取整 Math. ...

  5. 案例 element 表单名两端对齐

    >>> .el-form-item label:after { content: ""; display: inline-block; width: 100%; ...

  6. CSS高度坍塌原因及解决办法

    在文档流中,父元素的高度默认是被子元素撑开的,也就是子元素多高,父元素就多高. 但是当为子元素设置浮动以后,子元素会完全脱离文档流,此时将会导致子元素无法撑起父元素的高度,导致父元素的高度塌陷.由于父 ...

  7. 2018-8-10-win10-uwp-读写XML

    title author date CreateTime categories win10 uwp 读写XML lindexi 2018-08-10 19:16:51 +0800 2018-2-13 ...

  8. etc/pass命令列表

    用户 密码 用户UID 用户组GID 备注 home目录位置 默认shell root x 0 0 root /root /bin/bash daemon x 1 1 daemon /usr/sbin ...

  9. C6678芯片

    TMS320C6678是一款八核C66x的定点/浮点DSP,支持高性能信号处理应用.TMS320C6678芯片是美国德州仪器公司生产的处理器.它支持高性能信号处理应用,支持DMA传输,可应用于高端图像 ...

  10. 04机器学习实战之朴素贝叶斯scikit-learn实现

    In [8]: import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from sklearn.pre ...