通过Precision/Recall判断分类结果偏差极大时算法的性能
当我们对某些问题进行分类时,真实结果的分布会有明显偏差。
例如对是否患癌症进行分类,testing set 中可能只有0.5%的人患了癌症。
此时如果直接数误分类数的话,那么一个每次都预测人没有癌症的算法也是性能优异的。
此时,我们需要引入一对新的判别标准:Precision/Recall来进行算法的性能评判,它们的定义如下:
可以看出,Precision表示:预测一件事件发生,它实际发生的概率是多少。换言之:预测准的概率如何。
Recall表示:一件事情实际发生了,能把它预测出来的概率是多少。换言之:预测漏的程度怎么样。
通过使用这两个标准,在测试集分布严重不均与的时候,就能有效的评判算法性能了。
在实际使用过程中要注意:要将出现概率极小但我们很关注的类的标签至为1,出现概率大的类标签置为0。
不过,设定两个标准又导致了一个trade-off的问题:我们在选择算法的时候,到底是更看重Precison还会Recall呢?
为了解决这种纠结,前人引入了一种叫F1 score或者F score的方式来进行评价算法。
它的计算公式为:
其中,P表示Precision值,R表示Recall值。
可以看出,当P、R中任何一个为0时,整个F1 score的值都是0,表示该算法很差。
当P、R都是1时,F1 score值是1,表示该算法非常好。
通过Precision/Recall判断分类结果偏差极大时算法的性能的更多相关文章
- 机器学习:评价分类结果(Precision - Recall 的平衡、P - R 曲线)
一.Precision - Recall 的平衡 1)基础理论 调整阈值的大小,可以调节精准率和召回率的比重: 阈值:threshold,分类边界值,score > threshold 时分类为 ...
- 目标检测的评价标准mAP, Precision, Recall, Accuracy
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...
- 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy 真实结果 1 ...
- 查准与召回(Precision & Recall)
Precision & Recall 先看下面这张图来理解了,后面再具体分析.下面用P代表Precision,R代表Recall 通俗的讲,Precision 就是检索出来的条目中(比如网页) ...
- Classification week6: precision & recall 笔记
华盛顿大学 machine learning :classification 笔记 第6周 precision & recall 1.accuracy 局限性 我们习惯用 accuracy ...
- Precision,Recall,F1的计算
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...
- Handling skewed data---Error metrics for skewed(偏斜的) classes(precision&recall)
skewed classes skewed classes: 一种类里面的数量远远高于(或低于)另一个类,即两个极端的情况. 预测cancer的分类模型,如果在test set上只有1%的分类误差的话 ...
- 机器学习--如何理解Accuracy, Precision, Recall, F1 score
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...
- TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area,
TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area, https://www.zhihu.com/question/30643044 T/ ...
随机推荐
- 使用QEMU模拟树莓派
QEMU上的树莓派 我们开始设置一个Lab VM.我们将使用Ubuntu并在其中模拟我们所需的ARM版本. 首先,获取最新的Ubuntu版本并在VM中运行它: https://www.ubuntu.c ...
- 6.redis
1.Redis的安装以及客户端连接 安装:apt-get install redis-server 卸载:apt-get purge --auto-remove redis-server 启动:red ...
- 黑客正在使用美国NSA泄露的工具进行挖矿
早些年我们知道美国国家安全局囤积不少漏洞准备自己使用,结果这些漏洞以及利用工具被方程式组织获得. 随后名为影子经纪人的黑客组织获得这些漏洞和工具后又再次出售,当初的永恒之蓝漏洞就是从这里泄露的. 永恒 ...
- django用户投票系统详解
投票系统之详解 1.创建项目(mysite)与应用(polls) django-admin.py startproject mysite python manage.py startapp polls ...
- docker 安装 mxnet
1.根据自己的需求安装mxnet:https://hub.docker.com/u/mxnet 2.拉取镜像: nvidia-docker pull mxnet/python:1.5.0_gpu_cu ...
- Gym - 102040B Counting Inversion (数位dp)
题意:求[a,b]区间内的数字中正序对的个数. 具体思路参考: https://blog.csdn.net/weixin_43135318/article/details/88061396 https ...
- 用Python实现的二分查找算法(基于递归函数)
一.递归的定义 1.什么是递归:在一个函数里在调用这个函数本身 2.最大递归层数做了一个限制:997,但是也可以自己限制 1 def foo(): 2 print(n) 3 n+=1 4 foo(n) ...
- Nginx虚拟主机多server_name的顺序问题
Nginx虚拟主机多server_name的顺序问题 大 | 中 | 小 [ 2008-11-28 11:27 | by 张宴 ] [文章作者:张宴 本文版本:v1.0 最后修改:2008.11. ...
- OpenCV笔记(3)(Canny边缘检测、高斯金字塔、拉普拉斯金字塔、图像轮廓、模板匹配)
一.Canny边缘检测 Canny边缘检测是一系列方法综合的结果.其中主要包含以下步骤: 1.使用高斯滤波器,平滑图像,滤除噪声. 2.计算图像中每个像素点的梯度强度和方向. 3.应用非极大值抑制(N ...
- 什么是CSS 表单?
㈠输入框(input) 样式 ⑴使用 width 属性来设置输入框的宽度 示例:css部分:input { width: 100%; } html部分:<for ...