当我们对某些问题进行分类时,真实结果的分布会有明显偏差。

例如对是否患癌症进行分类,testing set 中可能只有0.5%的人患了癌症。

此时如果直接数误分类数的话,那么一个每次都预测人没有癌症的算法也是性能优异的。

此时,我们需要引入一对新的判别标准:Precision/Recall来进行算法的性能评判,它们的定义如下:

可以看出,Precision表示:预测一件事件发生,它实际发生的概率是多少。换言之:预测准的概率如何。

Recall表示:一件事情实际发生了,能把它预测出来的概率是多少。换言之:预测漏的程度怎么样。

通过使用这两个标准,在测试集分布严重不均与的时候,就能有效的评判算法性能了。

在实际使用过程中要注意:要将出现概率极小但我们很关注的类的标签至为1,出现概率大的类标签置为0。

不过,设定两个标准又导致了一个trade-off的问题:我们在选择算法的时候,到底是更看重Precison还会Recall呢?

为了解决这种纠结,前人引入了一种叫F1 score或者F score的方式来进行评价算法。

它的计算公式为:

其中,P表示Precision值,R表示Recall值。

可以看出,当P、R中任何一个为0时,整个F1 score的值都是0,表示该算法很差。

当P、R都是1时,F1 score值是1,表示该算法非常好。

通过Precision/Recall判断分类结果偏差极大时算法的性能的更多相关文章

  1. 机器学习:评价分类结果(Precision - Recall 的平衡、P - R 曲线)

    一.Precision - Recall 的平衡 1)基础理论 调整阈值的大小,可以调节精准率和召回率的比重: 阈值:threshold,分类边界值,score > threshold 时分类为 ...

  2. 目标检测的评价标准mAP, Precision, Recall, Accuracy

    目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...

  3. 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy

    针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy   真实结果 1 ...

  4. 查准与召回(Precision & Recall)

    Precision & Recall 先看下面这张图来理解了,后面再具体分析.下面用P代表Precision,R代表Recall 通俗的讲,Precision 就是检索出来的条目中(比如网页) ...

  5. Classification week6: precision & recall 笔记

    华盛顿大学 machine learning :classification  笔记 第6周 precision & recall 1.accuracy 局限性 我们习惯用 accuracy ...

  6. Precision,Recall,F1的计算

    Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...

  7. Handling skewed data---Error metrics for skewed(偏斜的) classes(precision&recall)

    skewed classes skewed classes: 一种类里面的数量远远高于(或低于)另一个类,即两个极端的情况. 预测cancer的分类模型,如果在test set上只有1%的分类误差的话 ...

  8. 机器学习--如何理解Accuracy, Precision, Recall, F1 score

    当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...

  9. TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area,

    TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area, https://www.zhihu.com/question/30643044 T/ ...

随机推荐

  1. mysoft

    @@a8649fbb56349908b5ca6708fb94b3ddabcf6b97381a9797d3dfb139b8749287117@@##74e02e1207e5a0a8996ba89f1d6 ...

  2. Delphi 有类型文件

  3. Elasticsearch改动

    随着Elasticsearch的版本升级,Elasticsearch的一些特性也在改变,下面是一些需要注意的地方 v6.x 版本之前 : 一个index下面是可以创建多个type v6.x 版本 : ...

  4. ssky-keygen + ssh-copy-id 无密码登陆远程LINUX主机【OK】

    ssky-keygen + ssh-copy-id 无密码登陆远程LINUX主机[OK]     使用下例中ssky-keygen和ssh-copy-id,仅需通过3个步骤的简单设置而无需输入密码就能 ...

  5. docker-compose容器互相连接

    一些示例未整理 haproxy 与nginx 容器连接 ## 服务的compose 编写 mkdir /mnt/compose vim docker-compose.yml web1: image: ...

  6. T级别视频上传解决方案

    之前仿造uploadify写了一个HTML5版的文件上传插件,没看过的朋友可以点此先看一下~得到了不少朋友的好评,我自己也用在了项目中,不论是用户头像上传,还是各种媒体文件的上传,以及各种个性的业务需 ...

  7. QT5 Even 事件

    事件的引入: 实现功能: 1.点击button 文本框两字改变成button被按下;很简单的在button上转到槽对lineEdit->setTest()设置即可; void myWidget: ...

  8. 51 Nod N的阶乘的长度 (斯特林近似)

    1058 N的阶乘的长度  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Inp ...

  9. TTTTTTTTTTTTTTTTTT hdu 1800 字符串哈希 裸题

    题意:意思是有若干个飞行员,需要在扫帚上练习飞行,每个飞行员具有不同的等级,且等级高的飞行员可以当等级低的飞行员的老师,且每个飞行员至多有且只有一个老师和学生.具有老师和学生关系的飞行员可以在同一把扫 ...

  10. python学习之路(10)--难点

    递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以 ...