I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S
1, S
2, S
3, S
4 ... S
x, ... S
n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S
x ≤ 32767). We define a function sum(i, j) = S
i + ... + S
j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i
1, j
1) + sum(i
2, j
2) + sum(i
3, j
3) + ... + sum(i
m, j
m) maximal (i
x ≤ i
y ≤ j
x or i
x ≤ j
y ≤ j
x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i
x, j
x)(1 ≤ x ≤ m) instead. ^_^

InputEach test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.

Process to the end of file.

OutputOutput the maximal summation described above in one line.

Sample Input

1 3 1 2 3
2 6 -1 4 -2 3 -2 3

Sample Output

6
8

Hint

Huge input, scanf and dynamic programming is recommended.
题意:给你n个数,让你从中取出m个子段使其和最大
题解:dp,dp[i][j]表示到a[j]包括a[j]从中去i段的最大值
所以dp[i][j]就分为两种情况:a[j]取或者不取
dp[i%2][k]=max(dp[i%2][k-1],w[k]);
用w[i]记录一定取的情况,又分为两种情况:

1、a[k]作为第i段

2、a[k]加到之前的最大段那里
        w[k]=max(dp[(i-1)%2][k-1],w[k-1])+sum[k]-sum[k-1];

初值:  dp[0][i]               
   if(i==k)dp[i%2][k]=w[k]=sum[k];
具体看代码:
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> PII;
#define mod 1000000007
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
//head
#define INF 0x3f3f3f3f
#define N 1000005
int n,m;
int w[N];
int dp[][N];
int sum[N];
int a[N];
int main()
{
ios_base::sync_with_stdio(); cin.tie();
while(cin>>m>>n){
sum[]=;
for(int i=;i<=n;i++)
{
cin>>a[i];
sum[i]=sum[i-]+a[i];
dp[][i]=;
}
for(int i=;i<=m;i++)
{
for(int k=i;k<=n;k++)
{
if(i==k)
dp[i%][k]=w[k]=sum[k];//从k个数中取k段的最大值是前k个数的和
else
{
w[k]=max(dp[(i-)%][k-],w[k-])+sum[k]-sum[k-];//这是一定要取的情况,分为两种:1、a[k]作为第i段,2、a[k]加到之前的最大段那里
dp[i%][k]=max(dp[i%][k-],w[k]);//a[k]取或者不取
}
}
} cout<<dp[m%][n]<<endl;
}
return ; }

参考博客:http://blog.sina.com.cn/s/blog_677a3eb30100jxqa.html

        https://blog.csdn.net/lishuhuakai/article/details/8067474

A - Max Sum Plus Plus (好题&&dp)的更多相关文章

  1. hdu1003 1024 Max Sum&Max Sum Plus Plus【基础dp】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4302208.html   ---by 墨染之樱花 dp是竞赛中常见的问题,也是我的弱项orz, ...

  2. HDU 1024 Max Sum Plus Plus(基础dp)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. Max Sum (hdu 1003 简单DP水过)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  4. hdu 1024 Max Sum Plus Plus(简单dp)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1024 题意:给定一个数组,求其分成m个不相交子段和的最大值. 这题有点问题其实m挺小的但题目并没有给出 ...

  5. 杭电60题--part 1 HDU1003 Max Sum(DP 动态规划)

    最近想学DP,锻炼思维,记录一下自己踩到的坑,来写一波详细的结题报告,持续更新. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Problem ...

  6. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  7. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  8. HDU 1024 Max Sum Plus Plus 简单DP

    这题的意思就是取m个连续的区间,使它们的和最大,下面就是建立状态转移方程 dp[i][j]表示已经有 i 个区间,最后一个区间的末尾是a[j] 那么dp[i][j]=max(dp[i][j-1]+a[ ...

  9. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

随机推荐

  1. Java中的关键字--synchronized

    在并发编程中,synchronized关键字是常出现的角色.之前我们都称呼synchronized关键字为重量锁,但是在JDK1.6中对synchronized进行了优化,引入了偏向锁.轻量锁.本篇介 ...

  2. wxstring与其他类型转换

    wxstring与其他类型转换 1.1 int to wxString: wxString str = wxString::Format(wxT("%i"),myInt); 1.2 ...

  3. 激活密钥许可证VMware Workstation Pro 15 激活许可证

    虚拟机 VMware Workstation Pro 15.5.0 及永久激活密钥 虚拟机下载地址:https://download3.vmware.com/software/wkst/file/VM ...

  4. Opacity函数-transparentize()、 fade-out()函数

    transparentize() 和 fade-out() 函数所起作用刚好与 opacify() 和 fade-in() 函数相反,让颜色更加的透明.这两个函数会让透明值做减法运算,当计算出来的结果 ...

  5. Python"sorted()"和".sort()"的区别

    sorted(A-LIST)会返回一个新的object,不改变**A-LIST*本身. A-LIST.sort()会直接改变A-List,不产生新的object.

  6. 一次服务器CPU占用100%的问题排查

    今天写了一段垃圾代码,然后上服务器上运行,cpu瞬间飙到了100%,现记录一下问题排除过程~ 1. 问题代码 package qinfeng.zheng.mockmvcdemo; import org ...

  7. HDU 6090 Rikka with Graph —— 2017 Multi-University Training 5

    Rikka with Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  8. 数据挖掘:WAP-Tree与PLWAP-Tree

    简介 我们首先应该从WAP-Tree说起,下面一段话摘自<Effective Web Log Mining using WAP Tree-Mine>原文 Abstract -World W ...

  9. HashMap的底层原理 cr:csdn:zhangshixi

    1.    HashMap概述: HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变 ...

  10. jenkins配置到gitlab拉代码

    参照: jenkins 从git拉取代码-简明扼要 https://www.cnblogs.com/jwentest/p/7065783.html 持续集成①安装部署jenkins从git获取代码-超 ...