RDD的缓存

Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存数据集。当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。

RDD缓存方式

RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的Action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。

/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY) /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): this.type = persist()

通过查看源码发现cache最终也是调用了persist方法,默认的存储级别是缓存在内存中,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。

object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(false, false, true, false)

  

class StorageLevel private(
private var _useDisk: Boolean,
private var _useMemory: Boolean,
private var _useOffHeap: Boolean,
private var _deserialized: Boolean,
private var _replication: Int = 1)

_useDisk: 是否使用硬盘
_useMemory: 是否使用内存
_useOffHeap: 内存不够存储是否使用硬盘
_deserialized: 是否反序列化
_replication: 存储副本,默认一个

缓存有可能丢失或者存储在内存中的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重新计算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重新计算全部Partition。

RDD缓存的更多相关文章

  1. RDD缓存学习

    首先实现rdd缓存 准备了500M的数据 10份,每份 100万条,存在hdfs 中通过sc.textFile方法读取 val rdd1 = sc.textFile("hdfs://mini ...

  2. RDD缓存策略

    Spark支持将数据集放置在集群的缓存中,以便于数据重用. Spark缓存策略对应的类: class StorageLevel private( private var useDisk_ : Bool ...

  3. Spark RDD概念学习系列之RDD的缓存(八)

      RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...

  4. RDD概念、特性、缓存策略与容错

    一.RDD概念与特性 1. RDD的概念 RDD(Resilient Distributed Dataset),是指弹性分布式数据集.数据集:Spark中的编程是基于RDD的,将原始数据加载到内存变成 ...

  5. Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

    1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...

  6. sparkRDD:第4节 RDD的依赖关系;第5节 RDD的缓存机制;第6节 DAG的生成

    4.      RDD的依赖关系 6.1      RDD的依赖 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency ...

  7. 【Spark】RDD的依赖关系和缓存相关知识点

    文章目录 RDD的依赖关系 宽依赖 窄依赖 血统 RDD缓存 概述 缓存方式 RDD的依赖关系 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency) 和宽依赖 ...

  8. 【原】Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令

    <Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足 ...

  9. [Spark] Spark的RDD编程

    本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的 ...

随机推荐

  1. python基础--6 集合

    #1.不同元素组成#2.无序#3.集合中的元素必须为不可变类型 a={1,2,3,4,5,(1,2,3)}print(a) #随机向集合添加元素a.add("sjsj")print ...

  2. [Poj2349]Arctic Network(二分,最小生成树)

    [Poj2349]Arctic Network Description 国防部(DND)要用无线网络连接北部几个哨所.两种不同的通信技术被用于建立网络:每一个哨所有一个无线电收发器,一些哨所将有一个卫 ...

  3. Springboot aop使用

    package com.jxd.Boot.aspect; import org.aspectj.lang.JoinPoint;import org.aspectj.lang.Signature;imp ...

  4. 手工实现hashset

    package cn.study.lu.four; import java.util.*; /** * 手工实现hashmap,加深理解底层原理 * @author Administrator * * ...

  5. springboot操作rabbitmq

    ////DirectExchange directExchange = new DirectExchange("test.direct");////amqpAdmin.declar ...

  6. DDL DML DCL的理解

    DDL的操作对象是表,不会对具体的数据进行操作. DML的操作对象是记录, DCL的操作对象是数据库对象的权限.

  7. Hadoop ”No room for reduce task“问题处理

    早上发现一个任务有20个reduce,但是只有四个正常完成,剩余16个等待了8个小时才分配执行(集群槽位资源充足) 解决方法:查看了集群的log,发现有这种warn: -- ::, WARN org. ...

  8. lnmp环境下 tp3.2 not found

    最近将一个lamp环境下使用tp3.2 开发的项目迁移到本地了, 但是在打开项目的时候,提示 not found,经过多方面查找发现是伪静态问题,解决方法如下: 在nginx 域名配置文件我这里是[v ...

  9. webpack 常用配置

    webpack.config.js const path = require('path'); const webpack = require('webpack'); const htmlWebpac ...

  10. 定制化fiddler会话列表字段

    前言:fiddler默认会话列表已有一些显示字段,可能并不是我们需要的,我们可以自行定制化. 以会话耗时为例: 目录 1.方法一:修改js脚本 2.方法二:通过菜单栏设置 1.方法一:修改js脚本 点 ...