Common Subsequence
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 44223   Accepted: 18088

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0

Source

 
const int maxn = ;
int dp[maxn][maxn];
char str1[maxn], str2[maxn]; int main() {
dp[][] = ;
int len1, len2;
while (~scanf("%s %s", str1, str2)) {
len1 = strlen(str1);
len2 = strlen(str2);
for (int i = ; i <= len1; i ++) {
for (int j = ; j <= len2; j ++) {
if (str1[i-] == str2[j-]) dp[i][j] = dp[i-][j-] + ;
else dp[i][j] = max(dp[i-][j], dp[i][j-]);
}
}
printf("%d\n", dp[len1][len2]);
}
return ;
}

POJ1458(最长公共子序列)的更多相关文章

  1. POJ1458 最长公共子序列

    描述: 给定两个字符串,求其最长公共子序列(不用连续), 输入: abc bcc programning content 输出: 2 2 解法: 动态规划. 定义dp[i][j]表示s1到i索引,以及 ...

  2. POJ-1458(LCS:最长公共子序列模板题)

    Common Subsequence POJ-1458 //最长公共子序列问题 #include<iostream> #include<algorithm> #include& ...

  3. 最长公共子序列LCS(POJ1458)

    转载自:https://www.cnblogs.com/huashanqingzhu/p/7423745.html 题目链接:http://poj.org/problem?id=1458 题目大意:给 ...

  4. 最长公共子序列(POJ1458)

    题目链接:http://poj.org/problem?id=1458 题目大意:给出两个字符串,求出这样的一个最长的公共子序列的长度:子序列中的每个字符都能在两个原串中找到,而且每个字符的先后顺序和 ...

  5. poj1458 求最长公共子序列 经典DP

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 45763   Accepted: 18 ...

  6. POJ-1458.CommonSubsequence.(DP:最长公共子序列裸题)

    本题大意:给出两个字符串,让你求出最长公共子序列的长度并输出. 本题思路:本题是经典的DP问题,由于是两个字符串,那么我们就用一个二维数组来进行区分,用dp[ i ][ j ]来表示在s1和s2中分别 ...

  7. POJ-1458 Common Subsequence(线性动规,最长公共子序列问题)

    Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 44464 Accepted: 18186 ...

  8. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  9. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  10. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. 数据结构与算法之顺序栈C语言实现

    顺序栈是一种特殊的顺序表,主要操作是入栈和出栈.将顺序表加一些特定限制,就成了顺序栈. 注: 1.顺序栈C语言实现: 2.按较简单的方式实现,主要帮助理解,可在此基础上修改,更加完善: 3.提供几个简 ...

  2. Micro Average vs Macro average Performance in a Multiclass classification setting

    整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performanc ...

  3. ADVICE FOR SHORT-TERM MACHINE LEARNING RESEARCH PROJECTS(短期机器学习研究的建议)

    – Tim Rocktäschel, Jakob Foerster and Greg Farquhar, 29/08/2018 Every year we get contacted by stude ...

  4. TensorFlow 同时调用多个预训练好的模型

    在某些任务中,我们需要针对不同的情况训练多个不同的神经网络模型,这时候,在测试阶段,我们就需要调用多个预训练好的模型分别来进行预测. 调用单个预训练好的模型请点击此处 弄明白了如何调用单个模型,其实调 ...

  5. static 关键字解析(转)

    static关键字解析   Java中的static关键字解析 static关键字是很多朋友在编写代码和阅读代码时碰到的比较难以理解的一个关键字,也是各大公司的面试官喜欢在面试时问到的知识点之一.下面 ...

  6. Python攻击

    python   DOS攻击 2版本 #!/usr/bin/env python import socket import time import threading #Pressure Test,d ...

  7. winform 控件半透明设置

    1.backcolor属性为color.FromArgb(100, 220, 220, 220); 2.全透明设置为transparent方法.

  8. Linux 进程,线程,线程池

    在linux内核,线程与进程的区别很小,或者说内核并没有真正所谓单独的线程的概念,进程的创建函数是fork,而线程的创建是通过clone实现的. 而clone与fork都是调用do_fork(),差异 ...

  9. 【python】Python3中出现'gbk' codec can't encode characte的成功解决方法?

    亲身测试,所遇问题完全解决!2018/07/08 21:37 环境:windows,Pycharm,python3.6.2 使用Python写文件的时候,或者将网络数据流写入到本地文件的时候,大部分情 ...

  10. 【bzoj2141】排队 分块+树状数组

    题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别, ...