[bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意
题解
代码
#include <bits/stdc++.h>
using namespace std;
const int M = 10001000;
int phi[M];
int Phi(int x) {
int i, ret = x;
for (i = 2; i * i <= x; i++) {
if (x % i == 0) {
ret /= i;
ret *= (i - 1);
while (x % i == 0)
x /= i;
}
}
if (x ^ 1)
ret /= x, ret *= x - 1;
return ret;
}
int pow(long long x, int y, int p) {
long long ret = 1;
while (y) {
if (y & 1)
ret = (ret * x) % p;
x = (x * x) % p;
y >>= 1;
}
return ret;
}
int solve(int p) {
if (p == 1)
return 0;
int tmp = 0;
while (~p & 1)
p >>= 1, ++tmp;
int phi_p = Phi(p);
int ret = solve(phi_p);
(ret += phi_p - tmp % phi_p) %= phi_p;
ret = pow(2, ret, p) % p;
return ret << tmp;
}
int main() {
int T, p;
scanf("%d", &T);
while (T--) {
scanf("%d", &p);
printf("%d\n", solve(p));
}
}
[bzoj3884]上帝与集合的正确用法——欧拉函数的更多相关文章
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
随机推荐
- 使用Visual Studio 2017构建.Net Core的Docker镜像
1 Docker 镜像优化 微软在为开发人员生成 Docker 镜像时,提供以下三种主要方案: 用于开发 .NET Core 应用的 镜像 用于构建生成 .NET Core 应用的 镜像 用于运行 ...
- 部署:阿里云ECS部署Docker CE
1 部署阿里云ECS,选择CentOS操作系统,并启动实例: 2 部署Docker CE: a.检查centos版本: $ cat /etc/redhat-release CentOS Linux r ...
- 剑指offer-矩形覆盖10
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? # -*- coding:utf-8 -*- class S ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- truffle的调用nodeJs的问题
Truffle3.0集成NodeJS并完全跑通(附详细实例,可能的错误) 升级到Truffle3.0 如果之前安装的是Truffle2.0版本,需要主动升级到Truffle3.0,两者的语法变化有点大 ...
- Flask 学习笔记(二):RESTful API
概括 URL:需要操作的对象,也就是资源 HTTP method:我要对该对象做什么(POST 增.DELETE 删.GET 查.PUT 和 PATCH 改) HTTP status code:操作的 ...
- LCA(最近公共祖先)——离线 Tarjan 算法
tarjan算法的步骤是(当dfs到节点u时):1 在并查集中建立仅有u的集合,设置该集合的祖先为u1 对u的每个孩子v: 1.1 tarjan之 1.2 合并v到父节点u的集合,确保集合的祖 ...
- Hibernate关联映射之_多对一
多对一 Employee-Department 对于 员工 和 部门 两个对象,从员工的角度来看,就是多对一的一个关系--->多个员工对应一个部门 表设计: 部门表:department,id主 ...
- 【bzoj4152】[AMPPZ2014]The Captain 堆优化Dijkstra
题目描述 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. 输入 第一行包含一个正整数n(2<=n< ...
- BZOJ4602: [Sdoi2016]齿轮 DFS 逆元
这道题就是一个DFS,有一篇奶牛题几乎一样.但是这道题卡精度. 这道题网上的另一篇题解是有问题的.取对数这种方法可以被轻松卡.比如1e18 与 (1e9-1)*(1e9+1)取对数根本无法保证不被卡精 ...