【bzoj4987】Tree 树形背包dp
题目描述
输入
输出
样例输入
10 7
1 2 35129
2 3 42976
3 4 24497
2 5 83165
1 6 4748
5 7 38311
4 8 70052
3 9 3561
8 10 80238
样例输出
184524
题解
树形背包dp
先考虑几个显而易见的性质:
1.选出的点一定是相邻的
2.对于选出的点,如果从$a_k$再走回$a_1$,那么就相当于每条边经过了两次
由于题目没有包含$dis(a_k,a_1)$,因此就相当于选出的点中的一条链可以只经过一次,其余的需要经过两次。
那我们就可以将选点转化为选边,然后考虑树形背包:
设$f[i][j][k]$表示以$i$为根的子树中选择点$i$,共选出$j$条边,且包含的链端点数目为$k$的最小代价。
这里解释一下:当$k=0$时,相当于要从根节点遍历一遍选出的边然后再从根节点出去;$k=1$时,相当于从根节点遍历一遍,到达某链端点后不出去;$k=2$时相当于从某端点遍历到根节点,然后出去再回来到另一端点。
对于根节点与子节点之间的边,显然当$k=0$或$2$时计算两遍,否则计算一遍。
这里第二维和第三维都满足背包性质,然后就可以树形背包了。
时间复杂度$\Theta(4.5n^2)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 3010
using namespace std;
int head[N] , to[N << 1] , len[N << 1] , next[N << 1] , cnt , si[N] , f[N][N][3];
inline void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x , int fa)
{
int i , j , k , l , m;
si[x] = 1 , f[x][0][0] = f[x][0][1] = 0;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
dfs(to[i] , x);
for(j = si[x] - 1 ; ~j ; j -- )
for(k = si[to[i]] - 1 ; ~k ; k -- )
for(l = 2 ; ~l ; l -- )
for(m = l ; ~m ; m -- )
f[x][j + k + 1][l] = min(f[x][j + k + 1][l] , f[x][j][l - m] + f[to[i]][k][m] + len[i] * (2 - (m & 1)));
si[x] += si[to[i]];
}
}
}
int main()
{
int n , k , i , j , x , y , z , ans = 1 << 30;
scanf("%d%d" , &n , &k);
for(i = 1 ; i < n ; i ++ )
scanf("%d%d%d" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
memset(f , 0x3f , sizeof(f));
dfs(1 , 0);
for(i = 1 ; i <= n ; i ++ )
for(j = 0 ; j <= 2 ; j ++ )
ans = min(ans , f[i][k - 1][j]);
printf("%d\n" , ans);
return 0;
}
【bzoj4987】Tree 树形背包dp的更多相关文章
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- HDU1561 The more ,The better (树形背包Dp)
ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物.但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先 ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj1495】[NOI2006]网络收费 暴力+树形背包dp
题目描述 给出一个有 $2^n$ 个叶子节点的完全二叉树.每个叶子节点可以选择黑白两种颜色. 对于每个非叶子节点左子树中的叶子节点 $i$ 和右子树中的叶子节点 $j$ :如果 $i$ 和 $j$ 的 ...
- 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...
- 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp
题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...
- [POJ1155]TELE(树形背包dp)
看到这道题的第一眼我把题目看成了TLE 哦那不是重点 这道题是树形背包dp的经典例题 题目描述(大概的): 给你一棵树,每条边有一个cost,每个叶节点有一个earn 要求在earn的和大于等于cos ...
- HDU-4044 树形背包dp好题
不会做,题解是参考网上的.感觉这道题是到好题,使得我对树形背包dp更了解了. 有几个注意的点,直接给出代码,题解以及注意点都在注释里了. #include<bits/stdc++.h> u ...
- poj2486Apple Tree[树形背包!!!]
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9989 Accepted: 3324 Descri ...
随机推荐
- PHP基本语法,类基本函数
C#中函数四要素返回类型,函数名,参数列表,函数体pulic void show()php函数定义1.最简单的定义function show(){echo "hello"}show ...
- jQuery:自学笔记(1)——基础入门
jQuery:自学笔记(1)——基础入门 认识JQuery 1.jQuery概述 jQuery是一个快速.小巧 .功能丰富的JavaScript函数库.它可以实现“写的少,做的多”的目标. jQuer ...
- BIO,NIO和AIO
BIO:同步阻塞式IO,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善. NIO: ...
- Vue.js学习笔记 第六篇 内置属性
computed属性 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> &l ...
- 关于Pytorch的二维tensor的gather和scatter_操作用法分析
看得不明不白(我在下一篇中写了如何理解gather的用法) gather是一个比较复杂的操作,对一个2维tensor,输出的每个元素如下: out[i][j] = input[index[i][j]] ...
- poj 2488 A Knight's Journey 【骑士周游 dfs + 记忆路径】
题目地址:http://poj.org/problem?id=2488 Sample Input 3 1 1 2 3 4 3 Sample Output Scenario #1: A1 Scenari ...
- CCNA 课程 五
VLSM (可变长子网掩码)也就是子网的划分过程 子网掩码和ip地址相与得到的是IP地址的网络地址(0&1 == 0 : 1&1 == 1) 简单来说就是 IP地址 和 子网掩码 上下 ...
- 【bzoj2819】Nim(dfs序+树状数组/线段树)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2819 首先根据SG定理,可得若每堆石子数量的异或值为0,则后手必胜,反之先手必胜.于是 ...
- python进阶03
进程线程不管哪门语言都是一块可以被重视的方向,下面一起学习学习python中的进程,线程 1.进程线程区别 通俗解释:一个程序QQ的运行就是一个进程运行:QQ中打开多个页面互不影响可以同时操作的每个页 ...
- [转载]Struts2.1.6+Spring2.5.6+Hibernate3.3.
原文地址:Struts2.1.6+Spring2.5.6+Hibernate3.3.1全注解实例详解(一)(转载大象)作者:沉睡森林 在JavaEE企业级开发中,以SSH2框架为核心的应用非常广,大 ...