100+20+20=140

还是很菜...

T1 在美妙的数学王国中畅游

一棵树每个点有一个函数(sin,exp,一次函数),支持加边,删边,单点修改,查询一条路径在 $x$ 处的点值和

sol:

题面都给了泰勒展开...那就展吧

展 10 项就可以过,因为时限很松,展 10~20 都是可以的,LCT 维护一下

T2 随机二分图

有一个二分图,三种边对

1.A 边和 B 边各自(独立)有 50% 概率出现

2.A 边和 B 边 50% 一起出现,50% 一起不出现

3.A 边和 B 边恰好出现一条,各 50% 概率出现

求完美匹配数量的期望

$n \leq 15$

sol:

所有边都可以转化成第一种边,然后暴力状压 dp 即可

然后看剪枝水平,不剪 40 ,剪了 100

T3 大葱的神力

有 n 个大葱,m 个抽屉,每个葱有体积,每个抽屉有容积,第 $i$ 个葱到第 $j$ 个抽屉会产生 $w_{(i,j)}$ 的分数,最大化分数

sol:

费用流...考场上没想出来

THUWC2017的更多相关文章

  1. 【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游(Link-Cut Tree,组合数学)

    [BZOJ5020][THUWC2017]在美妙的数学王国中畅游(Link-Cut Tree,组合数学) 题解 Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙 ...

  2. 【THUWC2017】随机二分图(动态规划)

    [THUWC2017]随机二分图(动态规划) 题面 BZOJ 洛谷 题解 如果每天边的限制都是\(0.5\)的概率出现或者不出现的话,可以把边按照二分图左侧的点的编号排序,然后设\(f[i][S]\) ...

  3. [THUWC2017]在美妙的数学王国中畅游

    [THUWC2017]在美妙的数学王国中畅游 e和sin信息不能直接合并 泰勒展开,大于21次太小,认为是0,保留前21次多项式即可 然后就把e,sin ,kx+b都变成多项式了,pushup合并 上 ...

  4. [THUWC2017]随机二分图

    题目大意 给一张二分图,有左部点和右部点. 有三种边,第一种是直接从左部点连向右部点,出现概率为50%. 第二种边一组里有两条边,这两条边同时出现或者不出现,概率都是50%. 第三种边一组里有两条边, ...

  5. [THUWC2017] 在美妙的数学王国畅游

    Description 懒得概括了.. Solution 挺裸的LCT+挺裸的泰勒展开吧... 稍微了解过一点的人应该都能很快切掉...吧? 就是把每个点的函数泰勒展开一下然后LCT维护子树sum就行 ...

  6. 【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游 LCT 泰勒展开

    题目大意 给你一棵树,每个点有一个函数\(f(x)\) 正弦函数 \(\sin(ax+b) (a\in[0,1],b\in[0,\pi],a+b\in[0,\pi])\) 指数函数 \(e^{ax+b ...

  7. 洛谷P4546 [THUWC2017]在美妙的数学王国中畅游 [LCT,泰勒展开]

    传送门 毒瘤出题人卡精度-- 思路 看到森林里加边删边,容易想到LCT. 然而LCT上似乎很难实现往一条链里代一个数进去求和,怎么办呢? 善良的出题人在下方给了提示:把奇怪的函数泰勒展开搞成多项式,就 ...

  8. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  9. Luogu4546 THUWC2017 在美妙的数学王国中畅游 LCT、泰勒展开

    传送门 题意:反正就是一堆操作 LCT总是和玄学东西放在一起我们不妨令$x_0=0.5$(其实取什么都是一样的,但是最好取在$[0,1]$的范围内),将其代入给出的式子,我们得到的$f(x)$的式子就 ...

  10. bzoj5006: [THUWC2017 Bipartite]随机二分图

    某人在玩一个非常神奇的游戏.这个游戏中有一个左右各 nnn 个点的二分图,图中的边会按照一定的规律随机出现. 为了描述这些规律,某人将这些边分到若干个组中.每条边或者不属于任何组 (这样的边一定不会出 ...

随机推荐

  1. python基础知识——包

    包是一种通过使用“模块名”来组织python模块的名称空间的方式. 无论是import形式还是from...import形式,凡是在导入语句中(不是在使用时)遇到带点的,就需要意识到——这是包. 包是 ...

  2. request doesn't contain a multipart/form-data or multipart/mixed stream ……

    有文件控件"file"的表单,在提交的时候,直接使用了ajax提交,结果报了一堆错,原来这个东东要提交表单,还要用post方式,最后更改为: $("#saveForm&q ...

  3. Python基础(15)_python模块、包

    一.模块 1.什么是模块:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀 模块的本质:模块的本质是一个py文件 2.模块分为三类:1)内置模块:2)第三方模块: ...

  4. Python 8 协程/异步IO

    协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来 ...

  5. Java字段初始化规律:

    Java字段初始化规律: Java进行初始化的地方有两个,初始化块和构造函数,其中初始化块又分为静态初始化块和实例初始化块(以上程序为实例初始化块).静态初始化块是类中由static修饰的初始化块,实 ...

  6. 微服务架构~BFF和网关是如何演化出来的

    介绍 BFF(Backend for Frontend)和网关Gateway是微服务架构中的两个重要概念,这两个概念相对比较新,有些开发人员甚至是架构师都不甚理解. 本文用假想的公司案例+图示的方式, ...

  7. jsp导出

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  8. HTML学习笔记(上)

    1. HTML介绍 1.1 什么是HTML HyperText Markup Language,超文本标记语言.简单来说,HTML文件本质上就是一个文本文件,但是这个文本文件是带有标签的. 不同的标签 ...

  9. latin-1

    Latin1是ISO-8859-1的别名,有些环境下写作Latin-1.ISO-8859-1编码是单字节编码,向下兼容ASCII,其编码范围是0x00-0xFF,0x00-0x7F之间完全和ASCII ...

  10. 如何在java代码中调用一个web项目jsp或者servlet

    有时候需要调用一个web项目的jsp或者servlet,但是执行内部的代码,并不是打开jsp,例如需要在一段java代码中清除一个web项目中的缓存,那么可以把清除缓存的代码放在该web项目的一个se ...