Contents目录

  • Chapter 0: Introduction to the companion book本辅导书简介
  • Chapter 1: Introduction 简介
    • Viewing an image: image_view_demo 查看一张图像:image_view_demo

  • Chapter 2: The image, its representations and properties
    • Displaying a coarse binary image: coarse_pixels_draw

    • Distance transform, an example: dist_trans_demo
    • Border of a region, an example: region_border_demo
  • Chapter 3: The image, its mathematical and physical background
    • Convolution, shift-multiply-add approach: conv_demo
    • Discrete Fourier Transform: dft_edu
    • Inverse DFT: idft_edu
    • 1D Discrete Fourier Transform: dft1d_demo
    • 2D Discrete Fourier Transform: dft2d_demo
    • Basis functions for the 2D Discrete Cosine Transform: dct2base
    • Principal Component Analysis: pca
  • Chapter 4: Data structures for image analysis
    • \MATLAB\/ data structures: structures
    • Displaying image values: showim_values
    • Co-occurrence matrix: cooc
    • Integral image construction: integralim
  • Chapter 5: Image pre-processing
    • Grayscale transformation, histogram equalization: hist_equal
    • Geometric transformation: imgeomt
    • Smoothing using a rotating mask: rotmask
    • Image sharpening by Laplacian: imsharpen
    • Harris corner detector: harris
    • Frequency filtering: buttfilt
  • Chapter 6: Segmentation I
    • Iterative threshold selection: imthresh
    • Line detection using Hough transform: hough_lines
    • Dynamic programming boundary tracing: dpboundary
    • Region merging via boundary melting: regmerge
    • Removal of small regions: remsmall
  • Chapter 7: Segmentation II
    • Mean shift segmentation: meanshsegm
    • Active contours (snakes): snake
    • Gradient vector flow snakes: mgvf
    • Level sets: levelset
    • Graph cut segmentation: GraphCut
  • Chapter 8: Shape representation and description
    • B-spline interpolation: bsplineinterp
    • Convex hull construction: convexhull
    • Region descriptors: regiondescr
    • Boundary descriptors: boundarydescr
  • Chapter 9: Object recognition
    • Maximum probability classification for normal data: maxnormalclass
    • Linear separability and basic classifiers: linsep_demo
    • Recognition of hand-written numerals: ocr_demo
    • Adaptive boosting: adaboost
  • Chapter 10: Image understanding
    • Random sample consensus: ransac
    • Gaussian mixture model estimation: gaussianmixture
    • Point distribution models: pointdistrmodel
    • Active shape model fit: asmfit
  • Chapter 11: 3D vision, geometry
    • Homography estimation from point correspondences---DLT method: u2Hdlt
    • Mathematical description of the camera: cameragen
    • Visualize a camera in a 3D plot: showcams
    • Decomposition of the projection matrix P: P2KRtC
    • Isotropic point normalization: pointnorm
    • Fundamental matrix---8-point algorithm: u2Fdlt
    • 3D point reconstruction---linear method: uP2Xdlt
  • Chapter 12: Use of 3D vision
    • Iterative closest point matching: vtxicrp
  • Chapter 13: Mathematical morphology
    • Top hat transformation: tophat
    • Object detection using opening: objdetect
    • Sequential thinning: thinning
    • Ultimate erosion: ulterosion
    • Binary granulometry: granulometry
    • Watershed segmentation: wshed
  • Chapter 14: Image data compression
    • Huffman code: huffman
    • Predictive compression: dpcm
    • JPEG compression pictorially, step by step: jpegcomp_demo
  • Chapter 15: Texture
    • Haralick texture descriptors: haralick
    • Wavelet texture descriptors: waveletdescr
    • Texture based segmentation: texturesegm
    • L-system interpreter: lsystem
  • Chapter 16: Motion analysis
    • Adaptive background modeling by using a mixture of Gaussians: bckggm
    • Particle filtering: particle_filtering
    • Importance sampling: importance_sampling
    • Kernel-based tracking: kernel_based_tracking

[Home][Contact]
Last modified at 15:56, 28 April 2014 CEST.

关于机器视觉与机器学习的大量资源及书籍 可在线阅读:http://blog.exbot.net/archives/48

demo videos:http://visionbook.felk.cvut.cz/demos.html

Image Processing, Analysis & and Machine Vision - A MATLAB Companion的更多相关文章

  1. 机器视觉工具箱-Machine Vision Toolbox for Matlab

    发现了一个机器视觉的Matlab工具箱,分享一下. 机器视觉工具箱(MVT的)规定,在机器视觉和基于视觉的控制有益的多种功能.这是一个有点折衷收集反映作者在光度学,摄影测量,色度学 方面的个人利益.它 ...

  2. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

  3. machine vision plan

    以OpenCV+C#/C++为主,Halcon+C#/C++.LabVIEW+NI Vision,其他还不了解 目前:Halcon+C# 1.完成:测量定位,表面质量检测 2.完成1后开始:OpenC ...

  4. Computer Vision with Matlab

    PPT: https://max.book118.com/html/2016/0325/38682623.shtm Code: http://www.pudn.com/Download/item/id ...

  5. books

    <<learning opencv>>,   布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者),   这本书一定要第二版的,因为第二版 ...

  6. 机器学习、图像识别方面 书籍推荐 via zhihu

    机器学习.图像识别方面 书籍推荐 作者:小涛 链接:https://www.zhihu.com/question/20523667/answer/97384340 来源:知乎 著作权归作者所有.商业转 ...

  7. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. hbase使用中需要注意一些问题

    接触hbase已经两年之久,但是真正的在实际项目中使用却只有半年的时间,使用过程中,一方面在在为hbase强大的性能兴奋之余,另一方面却也给我和我的团队造成了很多的麻烦,起初在使用我的水平也就停留在会 ...

  2. js对字符串进行编码方法总结

    在用javascript对URL字符串进行编码中,虽然escape().encodeURI().encodeURIComponent()三种方法都能对一些影响URL完整性的特殊字符进行过滤.但后两者是 ...

  3. bootstrapSwitch 使用

    1.bootstrapSwitch 默认选项,加上checked表示true,不加表示false <input type="checkbox" id="" ...

  4. 【转】性能测试工具JMeter的使用技巧

    在这此对新版本jmeter的学习+温习的过程,发现了一些以前不知道的功能,所以,整理出来与大分享.本文内容如下. 1.如何使用英文界面的jmeter 2.如何使用镜像服务器 3.Jmeter分布式测试 ...

  5. java从键盘输入一组数据,输出其最大值,平均值,最小值没法输出

    总结::需要耐心,加思考.做事不思考,那就是白做徒劳!!!!! package com.aini; import java.util.Scanner; //操...为什么数组的大小比较我硬是搞不懂,比 ...

  6. java从键盘输入若干数,求其最大值,最小值,平均值。等等

    总结:有一定基础的人,应该发现第一个程序可以运行,其实它有个致命的错误.有谁能一眼看出来呢?第二个程序是对的. 这个题目求最大值,最小值,平均值我不会求,不知道这个if判断放在类的外面还是main函数 ...

  7. juc原子类之二:基本类型原子类AtomicInteger(AtomicLong、AtomicBoolean)

    一.AtomicInteger简介 AtomicInteger, AtomicLong和AtomicBoolean这3个基本类型的原子类的原理和用法相似.以AtomicInteger对基本类型的原子类 ...

  8. 乘积最大(线性dp)

    乘积最大 时间限制: 1 Sec  内存限制: 128 MB提交: 4  解决: 4[提交][状态][讨论版][命题人:quanxing] 题目描述 今年是国际数学联盟确定的“2000——世界数学年” ...

  9. 分析java类的静态成员变量初始化先于非静态成员变量

    依上图中当class字节码文件被jvm虚拟机加载到内存中依次经过 连接 验证:对字节码进行验证 准备:给静态变量分配内存并赋予变量类型各自的默认值(注:基本类型为0或false,对象为null,sta ...

  10. 整合多个py文件接口的unittest。suite执行方法

    1.每个接口用例为一个.py文件.内容如下: getAdMakeMoneyList文件: # coding=utf-8import xlrdimport requestsimport unittest ...