浅谈\(DP\):https://www.cnblogs.com/AKMer/p/10437525.html

题目传送门:https://www.luogu.org/problemnew/show/P1439

设\(f[i][j]\)表示在\(a\)序列中\([1,i]\)和\(b\)序列的\([1,j]\)的最长公共子序列。

那么\(f[i][j]=max\){\(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])\)}

初始都为\(0\),\(f[n][n]\)即为答案。

时间复杂度:\(O(n^2)\)

空间复杂度:\(O(n^2)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=1e3+5; int n;
int f[maxn][maxn];
int a[maxn],b[maxn]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int main() {
n=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<=n;i++)
b[i]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) {
f[i][j]=max(f[i][j],f[i-1][j-1]+(a[i]==b[j]));
f[i][j]=max(f[i][j],max(f[i][j-1],f[i-1][j]));
}
printf("%d\n",f[n][n]);
return 0;
}

由于问题给出的是一个排列,所以我们可以把第二个序列变成相应的在第一个序列中的位置,那么这个时候最长公共子序列就变成了第二个序列的最长上升子序列了,这一个子序列会保证都在两个序列里出现过。

时间复杂度:\(O(nlogn)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std;
#define low(i) ((i)&(-(i))) const int maxn=1e5+5; int n;
int pos[maxn]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} struct tree_array {
int c[maxn]; void add(int pos,int v) {
for(int i=pos;i<=n;i+=low(i))
c[i]=max(c[i],v);
} int query(int pos) {
int res=0;
for(int i=pos;i;i-=low(i))
res=max(res,c[i]);
return res;
}
}T; int main() {
n=read();
for(int i=1;i<=n;i++) {
int x=read();
pos[x]=i;
}
for(int i=1;i<=n;i++) {
int x=read();x=pos[x];
int f=T.query(x-1)+1;
T.add(x,f);
}
printf("%d\n",T.query(n));
return 0;
}

洛谷【P1439】【模板】最长公共上升子序列的更多相关文章

  1. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  2. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  3. 洛谷 P2516 [HAOI2010]最长公共子序列

    题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...

  4. 洛谷P2516 [HAOI2010]最长公共子序列

    题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...

  5. 洛谷 P1439 【模板】最长公共子序列

    \[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...

  6. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  7. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  8. Codevs 2185【模板】最长公共上升子序列

    题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了.小沐沐说,对于 ...

  9. 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)

    BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...

  10. CF10D LCIS 最长公共上升子序列

    题目描述 This problem differs from one which was on the online contest. The sequence a1,a2,...,an a_{1}, ...

随机推荐

  1. ETL应用:使用shell实现文件级校验的方法

    BI应用中,对接口规范性约束很重要,接口文件提供需要配套提供该文件的校验文件,校验文件格式如下: 序号 信息内容 数据类型及长度 说明 1 接口数据文件名称 CHAR(50) 2 文件的大小(字节数) ...

  2. 表单元素disabled禁用后不能自动提交到服务器

    表单元素disabled禁用后不能自动提交到服务器,项目中需要一个元素只展示不修改,所以把一个input元素设置成了disabled="disabled",但是提交的时候改数据值是 ...

  3. POI 百万数据导出

    poi 导出主类 package test; import java.io.File; import java.io.FileOutputStream; import java.lang.reflec ...

  4. winter 2018 02 01 关于模运算的一道题

    题目:给出一个正整数n,问是否存在x,满足条件2^x mod n=1,如果存在,求出x的最小值. 分析:1.若给出的n是1,则肯定不存在这样的x;     2.若给出的是偶数,2的次幂取余一个偶数得到 ...

  5. oracle 启动数据库与监听器

    1.oracle 启动数据库与监听器 1)启动数据库 oracle用户进去 oracle/oracle sqlplus / as sysdba 然后startup 退出,然后启动监听进程 2)启动监听 ...

  6. Centos6.5安装Mysql5.6.10

    1. 先卸载掉老版本的mysql(linux严格区分大小写,查找的时候加上-i参数,和mysql相关的全部要卸) [root@liuchao ~]# rpm -qa | grep -i mysqlMy ...

  7. thinkphp判断更新是否成功

    如何判断一个更新操作是否成功 $Model = D('Blog'); $data['id'] = 10; $data['name'] = 'update name'; $result = $Model ...

  8. ThinkPHP模版时间显示

    <!-- 如果有日期输出,即$data.time不为空且不为0,则格式化时间戳,否则默认当前时间戳,并格式化成日期格式 --> {$data.time|default=time()|dat ...

  9. SolrCloud 5.5.5 + Zookeeper + HDFS使用

    安装sol r 三个节点192.168.1.231,192.168.1.234,192.168.1.235 下载安装包solr.tar.gz 解压 tar -zxvf solr.tar.gz 配置ZK ...

  10. Ansi 与 Unicode 字符串类型的互相转换

    WideCharToMultiByte 实现宽字节转换到窄字节MultiByteToWideChar 实现窄字节转换到宽字节 WideCharToMultiByte 的代码页用来标记与新转换的字符串相 ...