浅谈\(DP\):https://www.cnblogs.com/AKMer/p/10437525.html

题目传送门:https://www.luogu.org/problemnew/show/P1439

设\(f[i][j]\)表示在\(a\)序列中\([1,i]\)和\(b\)序列的\([1,j]\)的最长公共子序列。

那么\(f[i][j]=max\){\(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])\)}

初始都为\(0\),\(f[n][n]\)即为答案。

时间复杂度:\(O(n^2)\)

空间复杂度:\(O(n^2)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=1e3+5; int n;
int f[maxn][maxn];
int a[maxn],b[maxn]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int main() {
n=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<=n;i++)
b[i]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) {
f[i][j]=max(f[i][j],f[i-1][j-1]+(a[i]==b[j]));
f[i][j]=max(f[i][j],max(f[i][j-1],f[i-1][j]));
}
printf("%d\n",f[n][n]);
return 0;
}

由于问题给出的是一个排列,所以我们可以把第二个序列变成相应的在第一个序列中的位置,那么这个时候最长公共子序列就变成了第二个序列的最长上升子序列了,这一个子序列会保证都在两个序列里出现过。

时间复杂度:\(O(nlogn)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std;
#define low(i) ((i)&(-(i))) const int maxn=1e5+5; int n;
int pos[maxn]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} struct tree_array {
int c[maxn]; void add(int pos,int v) {
for(int i=pos;i<=n;i+=low(i))
c[i]=max(c[i],v);
} int query(int pos) {
int res=0;
for(int i=pos;i;i-=low(i))
res=max(res,c[i]);
return res;
}
}T; int main() {
n=read();
for(int i=1;i<=n;i++) {
int x=read();
pos[x]=i;
}
for(int i=1;i<=n;i++) {
int x=read();x=pos[x];
int f=T.query(x-1)+1;
T.add(x,f);
}
printf("%d\n",T.query(n));
return 0;
}

洛谷【P1439】【模板】最长公共上升子序列的更多相关文章

  1. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  2. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  3. 洛谷 P2516 [HAOI2010]最长公共子序列

    题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...

  4. 洛谷P2516 [HAOI2010]最长公共子序列

    题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...

  5. 洛谷 P1439 【模板】最长公共子序列

    \[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...

  6. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  7. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  8. Codevs 2185【模板】最长公共上升子序列

    题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了.小沐沐说,对于 ...

  9. 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)

    BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...

  10. CF10D LCIS 最长公共上升子序列

    题目描述 This problem differs from one which was on the online contest. The sequence a1,a2,...,an a_{1}, ...

随机推荐

  1. iOS获取设备IP地址

    项目用到要获取iOS设备的IP地址,有2种方法: 1)第一种比较简单,但是只有当你的设备连接到WIFI时才能获取到IP地址,倘若你的设备用的是流量,那就不行.代码如下: #import <ifa ...

  2. 20145240《Java程序设计》课程总结

    20145240<Java程序设计>课程总结 每周读书笔记链接汇总 20145240 <Java程序设计>第一周学习总结:http://www.cnblogs.com/2014 ...

  3. centos7 下安装eclipse

    1 在下面路径下载 eclipse-jee-neon-2-linux-gtk-x86_64.tar.gzhttp://eclipse.stu.edu.tw/technology/epp/downloa ...

  4. NCBI

    RefSeq: NCBI Reference Sequences GeneBank序列注释说明 利用NCBI查找基因信息 NCBI中RefSeq各种accession说明(一) NCBI中RefSeq ...

  5. js动态添加和删除标签

    html代码 <h1>动态添加和删除标签</h1> <div id="addTagTest"> <table> <thead& ...

  6. Java注解处理器

    Java注解处理器 2015/03/03 | 分类: 基础技术 | 0 条评论 | 标签: 注解 分享到:1 译文出处: race604.com   原文出处:Hannes Dorfmann Java ...

  7. BZOJ2764 [JLOI2011]基因补全

    Description 在 生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对,C总与G配对.两个碱基序列能相互 匹配,当且仅当它们等长,并 ...

  8. 0.00-050613_ZC_Chapter4_20151230

    1. 32位 保护模式 段选择符 --> 段描述符(段描述符表) --> 段基地址 + 偏移量  ==> 线性地址(ZC: 这个地址就是段的开始地址) 1.2. 段限长字段LIMIT ...

  9. Teamviewer_相关

    1.官网下载:https://www.teamviewer.com/zhcn/download/windows/,里面选择 "Portable"的版本来下载(按钮"下载P ...

  10. java读取Oracle的BFile文件

    /** * * @author Jasmine */public class GetBlob{ public static void main(String[] args) { Connection ...