刚刚接触到sg函数突然感觉到原来可以这么好用,sg函数应该算是博弈论中比较经典的东西了。下面来说说sg函数:

  从网上搜集资料终于能看懂了下面解释来自http://www.cnblogs.com/cj695/archive/2012/07/31/2617378.html,自己写不出来收藏了大神的思想。

   他几乎可以解决博弈论中的所有问题。你可以将sg函数看作是一个深搜的的过程。而每一堆的石子就相当于图中间的节点。所以说整个sg函数的过程就是在对一个有向无环图进行dfs的过程。

sg函数的具体内容可以用一个公式来表示(虽然我最不喜欢公式,不过我还是得写。不然这没法说清楚):

sg(x) =mex{sg(y) : y ∈ F(x)}。其中{}内的是一个集合(只要上过高中都应该知道吧),在:右边的是该集合元素所满足的条件。sg(y)为该元素的值(其实就是一个递归的过程),F(x)貌似是该状态可以达到的状态。重点来了。。mex()函数表示是不在该集合中的最小的非负整数的值。比如mex({1,2,3})=0...mex({0,2,4})=1...mex({})=0..最后得出来的结果中。为0为必败点,不为零必胜点。。

接下来才是sg函数精妙之处了。假如说是在一个游戏中有多个石子堆该怎么办了。我们只需要把对每个石子堆进行sg函数的调用,将得到的所有的值进行异或。得出来的结果为0则该情形为必败态。否则为必胜态。。

此处贴上sg的一个模板:

int sg[N];
bool hash[N];
void sg_solve(int *s,int t,int N) //N求解范围代表一堆石子中的个数 S[]数组是可以每次取的值,t是s的长度。
{
int i,j;
memset(sg,,sizeof(sg));
for(i=;i<=N;i++) //枚举石子的个数
{
memset(hash,,sizeof(hash));
for(j=;j<t;j++)
if(i - s[j] >= ) //枚举每次拿走的个数并标记
hash[sg[i-s[j]]] = ;
for(j=;j<=N;j++)
if(!hash[j])
break;
sg[i] = j;          //找到这个F[](该状态可以达到的状态)中不存在的最小的数
}
}

下面写一个模板的应用:

 题意:
是有1堆石子,两个人轮流从其中一堆拿,每次只能从一堆拿,可以拿任意个(大于0),也可以把一堆石子分成三堆(每堆大于0),问谁先赢。

void st()
{
int i,j,k;
sg[0]=0;
for(i=1;i<100;i++)
{
memset(vis,0,sizeof(vis));
for(j=0;j<i;j++)
vis[sg[i-j]]=1;
if(i>=3)
{
for(j=1;j<i-2;j++)
for(k=1;k<i-2;k++)
if(j+k<i)
vis[sg[j]^sg[k]^sg[i-k-j]]=1;
}
j=0;
while(vis[j]) j++;
sg[i]=j;
printf("%d\n",sg[i]);
}
}

  

sg函数的应用的更多相关文章

  1. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  2. 【转】博弈—SG函数

    转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...

  3. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  4. POJ2425 A Chess Game[博弈论 SG函数]

    A Chess Game Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3917   Accepted: 1596 Desc ...

  5. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  6. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  7. sg函数与博弈论2

    参考链接: http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html 这篇主要就是讲anti-sg.multi-sg和every-sg的. 例1 poj ...

  8. sg函数与博弈论

    这个标题是不是看起来很厉害呢... 我们首先来看一个最简单的游戏.比如我现在有一堆石子,有p个,每次可以取走若干个(不能不取),不能取的人就输了. 现在假设有两个人要玩这个游戏,一个人先手,一个人后手 ...

  9. hdu1536&&hdu3023 SG函数模板及其运用

    S-Nim Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status ...

  10. HDU1848 Fibonacci again and again SG函数

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

随机推荐

  1. windows下用py2exe打包脚本为可双击运行程序

    文件夹结构: ├── readme.txt ├── settings.py #程序参数 ├── settings.pyc ├── setup.py    #安装文件 ├── spider.ico   ...

  2. PHP中常用的输出语句比较?

    面试中经常问到这个,可以看下. 面试问题:比较echo print() print_r()  var_dump()? echo(): 可以一次输出多个值,多个值之间用逗号分隔.echo是语言结构(la ...

  3. Android 定时器Timer的使用

    定时器有什么用 在我们Android客户端上有时候可能有些任务不是当时就执行,而是过了一个规定的时间在执行此次任务.那么这个时候定时器的作用就非常有用了.首先开启一个简单的定时器 Timer time ...

  4. Invalid bound statement (not found) 问题处理

    最近开发过程中遇到一个BUG:Invalid bound statement (not found): com.mapper.ResourceIdMappingsBatchMapper.deleteR ...

  5. iOS cocos2d 2游戏开发实战(第3版)书评

    2013是游戏爆发的一年,手游用户也是飞速暴增.虽然自己不做游戏,但也是时刻了解手机应用开发的新动向.看到CSDN的"写书评得技术图书赢下载分"活动,就申请了一本<iOS c ...

  6. Android UI开发第二十六篇——Fragment间的通信

    为了重用Fragment的UI组件,创建的每个Fragment都应该是自包含的.有它自己的布局和行为的模块化组件.一旦你定义了这些可重用的Fragment,你就可以把它们跟一个Activity关联,并 ...

  7. mysql_表_操作

    1.创建表 # 基本语法: create table 表名( 列名 类型 是否可以为空 默认值 自增 主键, 列名 类型 是否可以为空 )ENGINE=InnoDB DEFAULT CHARSET=u ...

  8. 读取用户家目录下的配置文件到properties

    String conf = System.getProperty("user.home") + File.separator + "a.properties"; ...

  9. jQuery中获取特定顺序子元素(子元素种类不定)的方法

    提出问题:只已知父元素和父元素中子元素的次序,怎么通过jQuery方法获得该元素? <p>第一部分:</p> <ul> <li>1</li> ...

  10. CentOS中yum安装Java

    查看CentOS自带JDK是否已安装.◆输入:yum list installed |grep java. 若有自带安装的JDK,如何卸载CentOS系统自带Java环境?◆卸载JDK相关文件输入:y ...