C++11中rvalue references的使用
Rvalue references are a feature of C++ that was added with the C++11 standard. The syntax of an rvalue reference is to add && after a type.
In C++, there are rvalues and lvalues. An lvalue is an expression whose address can be taken,a locator value--essentially, an lvalue provides a (semi)permanent piece of memory. rvalues are not lvalues. An expression is an rvalue if it results in a temporary object.
Every C++ expression is either an lvalue or an rvalue. An lvalue refers to an object that persists beyond a single expression. You can think of an lvalue as an object that has a name. All variables, including nonmodifiable (const) variables, are lvalues. An rvalue is a temporary value that does not persist beyond the expression that uses it.
an "rvalue reference", that will let you bind a mutable reference to an rvalue, but not an lvalue. In other words, rvalue references are perfect for detecting if a value is temporary object or not. Rvalue references use the && syntax instead of just &, and can be const and non-const, just like lvalue references, although you'll rarely see a const rvalue reference.
Rvalue references solve at least two problems: Implementing move semantics; Perfect forwarding.
The original definition of lvalues and rvalues from the earliest days of C is as follows: An lvalue is an expression e that may appear on the left or on the right hand side of an assignment, whereas an rvalue is an expression that can only appear on the right hand side of an assignment.
If X is any type, then X&& is called an rvalue reference to X. For better distinction, the ordinary reference X& is now also called an lvalue reference.
rvalue references enable us to distinguish an lvalue from an rvalue.
In C++11,however, the rvalue reference lets us bind a mutable reference to an rvalue,but not an lvalue. In other words, rvalue references are perfect for detecting whether a value is a temporary object or not.
Important rvalue reference properties:
(1)、For overload resolution, lvalues prefer binding to lvalue references and rvalues prefer binding to rvalue references. Hence why temporaries prefer invoking a move constructor / move assignment operator over a copy constructor / assignment operator.
(2)、rvalue references will implicitly bind to rvalues and to temporaries that are the result of an implicit conversion. i.e. float f = 0f; int&& i = f; is well formed because float is implicitly convertible to int; the reference would be to a temporary that is the result of the conversion.
(3)、Named rvalue references are lvalues. Unnamed rvalue references are rvalues. This is important to understand why the std::move call is necessary in: foo&& r= foo(); foo f = std::move(r).
Rvalue references enable you to distinguish an lvalue from an rvalue. Lvalue references and rvalue references are syntactically and semantically similar,but they follow somewhat different rules.
右值引用是C++11中最重要的新特性之一,它解决了C++中大量的历史遗留问题,使C++标准库的实现在多种场景下消除了不必要的额外开销(如std::vector, std::string),也使得另外一些标准库(如std::unique_ptr, std::function)成为可能。即使你并不直接使用右值引用,也可以通过标准库,间接从这一新特性中受益。
右值引用的意义通常解释为两大作用:移动语义和完美转发。
右值引用可以使我们区分表达式的左值和右值。
右值引用它实现了移动语义(Move Sementics)和完美转发(Perfect Forwarding)。它的主要目的有两个方面:(1)、消除两个对象交互时不必要的对象拷贝,节省运算存储资源,提高效率;(2)、能够更简洁明确地定义泛型函数。
右值引用主要就是解决一个拷贝效率低下的问题,因为针对于右值,或者打算更改的左值,我们可以采用类似与auto_ptr的move(移动)操作,大大的提高性能(move semantics)。另外,C++的模板推断机制为参数T&&做了一个例外规则,让左值和右值的识别和转向(forward)非常简单,帮助我们写出高效并且简捷的泛型代码(perfect forwarding)。
左值的声明符号为”&”, 为了和左值区分,右值的声明符号为”&&”。
下面是从其他文章中copy的测试代码,详细内容介绍可以参考对应的reference:
#include "rvalue_references.hpp" #include <iostream> #include <string> #include <utility> ////////////////////////////////////////////////// // reference: http://en.cppreference.com/w/cpp/language/reference void double_string(std::string& s) { s += s; // 's' is the same object as main()'s 'str' } char& char_number(std::string& s, std::size_t n) { return s.at(n); // string::at() returns a reference to char } int test_lvalue_references1() { // 1. Lvalue references can be used to alias an existing object (optionally with different cv-qualification): std::string s = "Ex"; std::string& r1 = s; const std::string& r2 = s; r1 += "ample"; // modifies s // r2 += "!"; // error: cannot modify through reference to const std::cout << r2 << '\n'; // prints s, which now holds "Example" // 2. They can also be used to implement pass-by-reference semantics in function calls: std::string str = "Test"; double_string(str); std::cout << str << '\n'; // 3. When a function's return type is lvalue reference, the function call expression becomes an lvalue expression std::string str_ = "Test"; char_number(str_, 1) = 'a'; // the function call is lvalue, can be assigned to std::cout << str_ << '\n'; return 0; } ////////////////////////////////////////////////// // reference: http://en.cppreference.com/w/cpp/language/reference static void f(int& x) { std::cout << "lvalue reference overload f(" << x << ")\n"; } static void f(const int& x) { std::cout << "lvalue reference to const overload f(" << x << ")\n"; } static void f(int&& x) { std::cout << "rvalue reference overload f(" << x << ")\n"; } int test_rvalue_references1() { // 1. Rvalue references can be used to extend the lifetimes of temporary objects // (note, lvalue references to const can extend the lifetimes of temporary objects too, but they are not modifiable through them): std::string s1 = "Test"; // std::string&& r1 = s1; // error: can't bind to lvalue const std::string& r2 = s1 + s1; // okay: lvalue reference to const extends lifetime // r2 += "Test"; // error: can't modify through reference to const std::string&& r3 = s1 + s1; // okay: rvalue reference extends lifetime r3 += "Test"; // okay: can modify through reference to non-const std::cout << r3 << '\n'; // 2. More importantly, when a function has both rvalue reference and lvalue reference overloads, // the rvalue reference overload binds to rvalues (including both prvalues and xvalues), // while the lvalue reference overload binds to lvalues: int i = 1; const int ci = 2; f(i); // calls f(int&) f(ci); // calls f(const int&) f(3); // calls f(int&&) // would call f(const int&) if f(int&&) overload wasn't provided f(std::move(i)); // calls f(int&&) // This allows move constructors, move assignment operators, and other move-aware functions // (e.g. vector::push_back() to be automatically selected when suitable. return 0; } ///////////////////////////////////////////////////// // reference: http://www.bogotobogo.com/cplusplus/C11/5_C11_Move_Semantics_Rvalue_Reference.php static void printReference(int& value) { std::cout << "lvalue: value = " << value << std::endl; } static void printReference(int&& value) { std::cout << "rvalue: value = " << value << std::endl; } static int getValue() { int temp_ii = 99; return temp_ii; } int test_rvalue_references2() { int ii = 11; printReference(ii); printReference(getValue()); // printReference(99); return 0; } //////////////////////////////////////////////////////////// // references: https://msdn.microsoft.com/en-us/library/dd293668.aspx template<typename T> struct S; // The following structures specialize S by // lvalue reference (T&), const lvalue reference (const T&), // rvalue reference (T&&), and const rvalue reference (const T&&). // Each structure provides a print method that prints the type of // the structure and its parameter. template<typename T> struct S<T&> { static void print(T& t) { std::cout << "print<T&>: " << t << std::endl; } }; template<typename T> struct S<const T&> { static void print(const T& t) { std::cout << "print<const T&>: " << t << std::endl; } }; template<typename T> struct S<T&&> { static void print(T&& t) { std::cout << "print<T&&>: " << t << std::endl; } }; template<typename T> struct S<const T&&> { static void print(const T&& t) { std::cout << "print<const T&&>: " << t << std::endl; } }; // This function forwards its parameter to a specialized // version of the S type. template <typename T> void print_type_and_value(T&& t) { S<T&&>::print(std::forward<T>(t)); } // This function returns the constant string "fourth". const std::string fourth() { return std::string("fourth"); } int test_rvalue_references3() { // The following call resolves to: // print_type_and_value<string&>(string& && t) // Which collapses to: // print_type_and_value<string&>(string& t) std::string s1("first"); print_type_and_value(s1); // The following call resolves to: // print_type_and_value<const string&>(const string& && t) // Which collapses to: // print_type_and_value<const string&>(const string& t) const std::string s2("second"); print_type_and_value(s2); // The following call resolves to: // print_type_and_value<string&&>(string&& t) print_type_and_value(std::string("third")); // The following call resolves to: // print_type_and_value<const string&&>(const string&& t) print_type_and_value(fourth()); return 0; }
GitHub:https://github.com/fengbingchun/Messy_Test
C++11中rvalue references的使用的更多相关文章
- [转载] C++11中的右值引用
C++11中的右值引用 May 18, 2015 移动构造函数 C++98中的左值和右值 C++11右值引用和移动语义 强制移动语义std::move() 右值引用和右值的关系 完美转发 引用折叠推导 ...
- 翻译「C++ Rvalue References Explained」C++右值引用详解 Part1:概述
本文系对「C++ Rvalue References Explained」 该文的翻译,原文作者:Thomas Becker. 该文较详细的解释了C++11右值引用的作用和出现的意义,也同时被Scot ...
- C++ 11 中的右值引用
C++ 11 中的右值引用 右值引用的功能 首先,我并不介绍什么是右值引用,而是以一个例子里来介绍一下右值引用的功能: #include <iostream> #include &l ...
- c++11 中的 move 与 forward
[update: 关于左值右值的另一点总结,请参看这篇] 一. move 关于 lvaue 和 rvalue,在 c++11 以前存在一个有趣的现象:T& 指向 lvalue (左传引用), ...
- C++11中的右值引用
原文出处:http://kuring.me/post/cpp11_right_reference May 18, 2015 移动构造函数 C++98中的左值和右值 C++11右值引用和移动语义 强制移 ...
- 二十分钟弄懂C++11 的 rvalue reference (C++ 性能剖析 (5))
C++ 11加了许多新的功能.其中对C++性能和我们设计class的constructor或assignment可能产生重大影响的非rvalue reference莫属!我看了不少资料,能说清它的不多 ...
- C++11 中值得关注的几大变化(网摘)
C++11 中值得关注的几大变化(详解) 原文出处:[陈皓 coolshell] 源文章来自前C++标准委员会的 Danny Kalev 的 The Biggest Changes in C++11 ...
- C++11 中值得关注的几大变化(详解)
源文章来自前C++标准委员会的 Danny Kalev 的 The Biggest Changes in C++11 (and Why You Should Care),赖勇浩做了一个中文翻译在这里. ...
- C++11中std::forward的使用 (转)
std::forward argument: Returns an rvalue reference to arg if arg is not an lvalue reference; If arg ...
随机推荐
- pip pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool
设置超时时间: pip --default-timeout=100 install Pillow
- Inner Join, Left Outer Join和Association的区别
测试用的CDS视图的源代码,第8行用Inner Join连接TJ02T, 后者存放了所有系统状态的ID和描述. Inner Join测试结果:对于那些在TJ02T里没有维护描述信息的状态,它们不会出现 ...
- python:正则模块
1,正则表达式 正则表达式是用来做字符串的匹配的,正则有他自己的规则,和python没有关系,一种匹配字符串的规则. 2,字符组 在同一个位置可能出现的各种字符组成了一个字符组,在正则表达式中用[]表 ...
- POJ 3694 无向图的桥
Network Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10404 Accepted: 3873 Descript ...
- 查看flash的版本
查看当前浏览器的flash版本: http://www.adobe.com/swf/software/flash/about/flashAbout_info_small.swf 针对谷歌浏览器 chr ...
- 利用Graphviz画出图
graphviz官网:http://www.graphviz.org/ 背景:有画图需要,之前见到别人用graphviz画,画出来的图漂亮,且自动帮你排版安排布局,所以自己想尝试用它画. 其中遇到的几 ...
- Docker 安装tomcat7
[root@VM_0_7_centos ~]# docker pull tomcat:7-jre7 [root@VM_0_7_centos ~]# docker run -di --name=tomc ...
- lucene&solr学习——分词器
下图是语汇单元的生成过程: 从一个Reader字符流开始,创建基于Reader的Tokenizer分词器,经过三个TokenFilter生成语汇单元Tokens. 要看分词器的分析效果,只需要看Tok ...
- MVC个层次之间的联系
MVC顾名思义分为三层: M:Model层 Model层中 包含 DAO层和Javabean层: V:view 意为视图层也叫表示层,也可以直接理解为是JSP,用于前端显示: C: ‘控制层’ ...
- Linux/Mac scp命令笔记
scp命令用于Linux之间复制文件和目录. 参数说明: -1: 强制scp命令使用协议ssh1-2: 强制scp命令使用协议ssh2-4: 强制scp命令只使用IPv4寻址-6: 强制scp命令只使 ...