POJ 3693 Maximum repetition substring(最多重复次数的子串)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10461 | Accepted: 3234 |
Description
The repetition number of a string is defined as the maximum number R such that the string can be partitioned into R same consecutive substrings. For example, the repetition number of "ababab" is 3 and "ababa" is 1.
Given a string containing lowercase letters, you are to find a substring of it with maximum repetition number.
Input
The input consists of multiple test cases. Each test case contains exactly one line, which
gives a non-empty string consisting of lowercase letters. The length of the string will not be greater than 100,000.
The last test case is followed by a line containing a '#'.
Output
For each test case, print a line containing the test case number( beginning with 1) followed by the substring of maximum repetition number. If there are multiple substrings of maximum repetition number, print the lexicographically smallest one.
Sample Input
ccabababc
daabbccaa
#
Sample Output
Case 1: ababab
Case 2: aa
题目链接:POJ 3693
把所有可能构成的最多重复次数的子串所对应的循环节大小存下来,然后枚举$SA[i]$与循环节大小,如果刚好枚举到了这个$SA[i]$对应的就是这个循环节大小,那么就是最小的字典序解了,因为$SA[]$是按照字典序排的,当然要注意单个字符这种字符串,因此一开始要把长度定为1。
另外这题数据非常弱,实际上枚举的时候需要加一些边界防止越界问题。可以试一下这些数据:
kabhvlkba
slgnaebbga
lajnbabab
kabkbakbvkab
akbakabka
akjbakjbajkba
akjbakbaiajklbna
kljdfnbisn
akbvkab
答案应该是
a
b
abab
a
a
akjbakjb
a
b
a
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 100010;
int wa[N], wb[N], cnt[N], sa[N];
int ran[N], height[N];
char s[N];
int pos[N]; inline int cmp(int r[], int a, int b, int d)
{
return r[a] == r[b] && r[a + d] == r[b + d];
}
void DA(int n, int m)
{
int i;
int *x = wa, *y = wb;
for (i = 0; i < m; ++i)
cnt[i] = 0;
for (i = 0; i < n; ++i)
++cnt[x[i] = s[i]];
for (i = 1; i < m; ++i)
cnt[i] += cnt[i - 1];
for (i = n - 1; i >= 0; --i)
sa[--cnt[x[i]]] = i;
for (int k = 1; k <= n; k <<= 1)
{
int p = 0;
for (i = n - k; i < n; ++i)
y[p++] = i;
for (i = 0; i < n; ++i)
if (sa[i] >= k)
y[p++] = sa[i] - k;
for (i = 0; i < m; ++i)
cnt[i] = 0;
for (i = 0; i < n; ++i)
++cnt[x[y[i]]];
for (i = 1; i < m; ++i)
cnt[i] += cnt[i - 1];
for (i = n - 1; i >= 0; --i)
sa[--cnt[x[y[i]]]] = y[i];
swap(x, y);
x[sa[0]] = 0;
p = 1;
for (i = 1; i < n; ++i)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], k) ? p - 1 : p++;
m = p;
if (m >= n)
break;
}
}
void gethgt(int n)
{
int i, k = 0;
for (i = 1; i <= n; ++i)
ran[sa[i]] = i;
for (i = 0; i < n; ++i)
{
if (k)
--k;
int j = sa[ran[i] - 1];
while (s[j + k] == s[i + k])
++k;
height[ran[i]] = k;
}
}
namespace SG
{
int dp[N][17];
void init(int l, int r)
{
int i, j;
for (i = l; i <= r; ++i)
dp[i][0] = height[i];
for (j = 1; l + (1 << j) - 1 <= r; ++j)
{
for (i = l; i + (1 << j) - 1 <= r; ++i)
dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
}
}
int ask(int l, int r)
{
int len = r - l + 1;
int k = 0;
while (1 << (k + 1) <= len)
++k;
return min(dp[l][k], dp[r - (1 << k) + 1][k]);
}
int LCP(int l, int r, int len)
{
l = ran[l], r = ran[r];
if (l > r)
swap(l, r);
if (l == r)
return len - sa[l];
return ask(l + 1, r);
}
}
int main(void)
{
int T = 0, len, i, j;
while (~scanf("%s", s) && s[0] != '#')
{
len = strlen(s);
DA(len + 1, 130);
gethgt(len);
SG::init(1, len);
int ans = 1;
int sz = 0;
for (int L = 1; L < len; ++L)
{
for (i = 0; i + L < len; i += L)
{
int lcp = SG::LCP(i, i + L, len);
int cnt = lcp / L + 1;
int j = i - (L - lcp % L);
if (j >= 0 && lcp % L != 0 && SG::LCP(j , j + L, len) / L + 1 > cnt)
++cnt;
if (cnt > ans)
{
ans = cnt;
sz = 0;
pos[sz++] = L;
}
else if (cnt == ans)
pos[sz++] = L;
}
}
int length = 1;
int st = 0;
int flag = 0;
for (i = 1; i <= len && !flag; ++i)
{
for (j = 0; j < sz; ++j)
{
int unit = pos[j];
if (sa[i] + unit < len && SG::LCP(sa[i], sa[i] + unit, len) >= (ans - 1) * unit)
{
length = ans * unit;
st = sa[i];
flag = 1;
break;
}
}
}
printf("Case %d: ", ++T);
for (i = st; i < st + length; ++i)
putchar(s[i]);
puts("");
}
return 0;
}
POJ 3693 Maximum repetition substring(最多重复次数的子串)的更多相关文章
- POJ-3693/HDU-2459 Maximum repetition substring 最多重复次数的子串(需要输出具体子串,按字典序)
http://acm.hdu.edu.cn/showproblem.php?pid=2459 之前hihocoder那题可以算出最多重复次数,但是没有输出子串.一开始以为只要基于那个,每次更新答案的时 ...
- POJ - 3693 Maximum repetition substring(重复次数最多的连续重复子串)
传送门:POJ - 3693 题意:给你一个字符串,求重复次数最多的连续重复子串,如果有一样的,取字典序小的字符串. 题解: 比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现 ...
- poj 3693 Maximum repetition substring 重复次数最多的连续子串
题目链接 题意 对于任意的字符串,定义它的 重复次数 为:它最多可被划分成的完全相同的子串个数.例如:ababab 的重复次数为3,ababa 的重复次数为1. 现给定一字符串,求它的一个子串,其重复 ...
- POJ 3693 Maximum repetition substring(连续重复子串)
http://poj.org/problem?id=3693 题意:给定一个字符串,求重复次数最多的连续重复子串. 思路: 这道题确实是搞了很久,首先枚举连续子串的长度L,那么子串肯定包含了r[k], ...
- POJ 3693 Maximum repetition substring(后缀数组)
Description The repetition number of a string is defined as the maximum number R such that the strin ...
- POJ 3693 Maximum repetition substring(后缀数组+ST表)
[题目链接] poj.org/problem?id=3693 [题目大意] 求一个串重复次数最多的连续重复子串并输出,要求字典序最小. [题解] 考虑错位匹配,设重复部分长度为l,记s[i]和s[i+ ...
- 后缀数组 POJ 3693 Maximum repetition substring
题目链接 题意:给定一个字符串,求重复次数最多的连续重复子串. 分析:(论文上的分析)先穷举长度 L,然后求长度为 L 的子串最多能连续出现几次.首先连续出现 1 次是肯定可以的,所以这里只考虑至少 ...
- poj 3693 Maximum repetition substring (后缀数组)
其实是论文题.. 题意:求一个字符串中,能由单位串repeat得到的子串中,单位串重复次数最多的子串.若有多个重复次数相同的,输出字典序最小的那个. 解题思路:其实跟论文差不多,我看了很久没看懂,后来 ...
- POJ 3693 Maximum repetition substring ——后缀数组
重复次数最多的字串,我们可以枚举循环节的长度. 然后正反两次LCP,然后发现如果长度%L有剩余的情况时,答案是在一个区间内的. 所以需要找到区间内最小的rk值. 两个后缀数组,四个ST表,$\Thet ...
随机推荐
- CentOS下删除MySql
1.查找以前是否装有mysql rpm -qa | grep -i mysql 显示之前安装了: MySQL-client-5.5.49-1.linux2.6.i386 MySQL-server-5. ...
- 构造HTTP请求Header实现“伪造来源IP”
在阅读本文前,大家要有一个概念,在实现正常的TCP/IP 双方通信情况下,是无法伪造来源 IP 的,也就是说,在 TCP/IP 协议中,可以伪造数据包来源 IP ,但这会让发送出去的数据包有去无回,无 ...
- Qt5 调试之详细日志文件输出(qInstallMessageHandler)
注明:以下方法仅适用于 Qt5 及以上版本 函数说明: QtMessageHandler qInstallMessageHandler(QtMessageHandler handler) 此函数在使 ...
- MongoDB从环境搭建到代码编程(Window 环境)
本人开发环境: window Server 2008 , 64位系统 服务端 MongoDB下载地址:http://www.mongodb.org/downloads (本人己下好的在百度网盘 : ...
- python2.7练习小例子(二十四)
24):1.题目:利用递归方法求5!. 程序分析:递归公式:fn=fn_1*4! #!/usr/bin/python # -*- coding: UTF-8 -*- def fact( ...
- NB-IOT的键值对
1. 关于NB-IOT的软件开发,有一个功能,NB收到数据的时候可以唤醒处于低功耗下的MCU. 2. 2个键值对可以配置这个功能.使用键值对的方式. 3. 遇到的第一个问题,<config> ...
- asp.net 模拟CURL调用微信公共平台API 上传下载多媒体文件接口
FormItem类 public class FormItem { public string Name { get; set; } public ParamType ParamType { get; ...
- 『AngularJS』理解$Scope
理解$Scope 执行概要 在AngularJS,一个子scope通常原型继承于它的父scope.应用于这个规则的表达式是一个使用scope:{...}的指令,这将创建一个『孤岛』scope(非原型继 ...
- Autofac小例子
AutoFac是.net平台下的IOC容器产品.今天学习一下它的使用方法. 1.最简单的使用. public interface ITestDao { string SayHello(); } pub ...
- AutoMapper.RegExtension 介绍
AutoMapper.RegExtension 为一个特小特小特小的用来根据约定自动调用AutoMapper中的方法配置映射的扩展库.你可以引入该库也可以将源码中核心部分的代码文件夹整个拷贝至项目中. ...