Maximum repetition substring
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10461   Accepted: 3234

Description

The repetition number of a string is defined as the maximum number R such that the string can be partitioned into R same consecutive substrings. For example, the repetition number of "ababab" is 3 and "ababa" is 1.

Given a string containing lowercase letters, you are to find a substring of it with maximum repetition number.

Input

The input consists of multiple test cases. Each test case contains exactly one line, which
gives a non-empty string consisting of lowercase letters. The length of the string will not be greater than 100,000.

The last test case is followed by a line containing a '#'.

Output

For each test case, print a line containing the test case number( beginning with 1) followed by the substring of maximum repetition number. If there are multiple substrings of maximum repetition number, print the lexicographically smallest one.

Sample Input

ccabababc
daabbccaa
#

Sample Output

Case 1: ababab
Case 2: aa

题目链接:POJ 3693

把所有可能构成的最多重复次数的子串所对应的循环节大小存下来,然后枚举$SA[i]$与循环节大小,如果刚好枚举到了这个$SA[i]$对应的就是这个循环节大小,那么就是最小的字典序解了,因为$SA[]$是按照字典序排的,当然要注意单个字符这种字符串,因此一开始要把长度定为1。

另外这题数据非常弱,实际上枚举的时候需要加一些边界防止越界问题。可以试一下这些数据:

kabhvlkba
slgnaebbga
lajnbabab
kabkbakbvkab
akbakabka
akjbakjbajkba
akjbakbaiajklbna
kljdfnbisn
akbvkab

答案应该是

a

b

abab

a

a

akjbakjb

a

b

a

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 100010;
int wa[N], wb[N], cnt[N], sa[N];
int ran[N], height[N];
char s[N];
int pos[N]; inline int cmp(int r[], int a, int b, int d)
{
return r[a] == r[b] && r[a + d] == r[b + d];
}
void DA(int n, int m)
{
int i;
int *x = wa, *y = wb;
for (i = 0; i < m; ++i)
cnt[i] = 0;
for (i = 0; i < n; ++i)
++cnt[x[i] = s[i]];
for (i = 1; i < m; ++i)
cnt[i] += cnt[i - 1];
for (i = n - 1; i >= 0; --i)
sa[--cnt[x[i]]] = i;
for (int k = 1; k <= n; k <<= 1)
{
int p = 0;
for (i = n - k; i < n; ++i)
y[p++] = i;
for (i = 0; i < n; ++i)
if (sa[i] >= k)
y[p++] = sa[i] - k;
for (i = 0; i < m; ++i)
cnt[i] = 0;
for (i = 0; i < n; ++i)
++cnt[x[y[i]]];
for (i = 1; i < m; ++i)
cnt[i] += cnt[i - 1];
for (i = n - 1; i >= 0; --i)
sa[--cnt[x[y[i]]]] = y[i];
swap(x, y);
x[sa[0]] = 0;
p = 1;
for (i = 1; i < n; ++i)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], k) ? p - 1 : p++;
m = p;
if (m >= n)
break;
}
}
void gethgt(int n)
{
int i, k = 0;
for (i = 1; i <= n; ++i)
ran[sa[i]] = i;
for (i = 0; i < n; ++i)
{
if (k)
--k;
int j = sa[ran[i] - 1];
while (s[j + k] == s[i + k])
++k;
height[ran[i]] = k;
}
}
namespace SG
{
int dp[N][17];
void init(int l, int r)
{
int i, j;
for (i = l; i <= r; ++i)
dp[i][0] = height[i];
for (j = 1; l + (1 << j) - 1 <= r; ++j)
{
for (i = l; i + (1 << j) - 1 <= r; ++i)
dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
}
}
int ask(int l, int r)
{
int len = r - l + 1;
int k = 0;
while (1 << (k + 1) <= len)
++k;
return min(dp[l][k], dp[r - (1 << k) + 1][k]);
}
int LCP(int l, int r, int len)
{
l = ran[l], r = ran[r];
if (l > r)
swap(l, r);
if (l == r)
return len - sa[l];
return ask(l + 1, r);
}
}
int main(void)
{
int T = 0, len, i, j;
while (~scanf("%s", s) && s[0] != '#')
{
len = strlen(s);
DA(len + 1, 130);
gethgt(len);
SG::init(1, len);
int ans = 1;
int sz = 0;
for (int L = 1; L < len; ++L)
{
for (i = 0; i + L < len; i += L)
{
int lcp = SG::LCP(i, i + L, len);
int cnt = lcp / L + 1;
int j = i - (L - lcp % L);
if (j >= 0 && lcp % L != 0 && SG::LCP(j , j + L, len) / L + 1 > cnt)
++cnt;
if (cnt > ans)
{
ans = cnt;
sz = 0;
pos[sz++] = L;
}
else if (cnt == ans)
pos[sz++] = L;
}
}
int length = 1;
int st = 0;
int flag = 0;
for (i = 1; i <= len && !flag; ++i)
{
for (j = 0; j < sz; ++j)
{
int unit = pos[j];
if (sa[i] + unit < len && SG::LCP(sa[i], sa[i] + unit, len) >= (ans - 1) * unit)
{
length = ans * unit;
st = sa[i];
flag = 1;
break;
}
}
}
printf("Case %d: ", ++T);
for (i = st; i < st + length; ++i)
putchar(s[i]);
puts("");
}
return 0;
}

POJ 3693 Maximum repetition substring(最多重复次数的子串)的更多相关文章

  1. POJ-3693/HDU-2459 Maximum repetition substring 最多重复次数的子串(需要输出具体子串,按字典序)

    http://acm.hdu.edu.cn/showproblem.php?pid=2459 之前hihocoder那题可以算出最多重复次数,但是没有输出子串.一开始以为只要基于那个,每次更新答案的时 ...

  2. POJ - 3693 Maximum repetition substring(重复次数最多的连续重复子串)

    传送门:POJ - 3693   题意:给你一个字符串,求重复次数最多的连续重复子串,如果有一样的,取字典序小的字符串. 题解: 比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现 ...

  3. poj 3693 Maximum repetition substring 重复次数最多的连续子串

    题目链接 题意 对于任意的字符串,定义它的 重复次数 为:它最多可被划分成的完全相同的子串个数.例如:ababab 的重复次数为3,ababa 的重复次数为1. 现给定一字符串,求它的一个子串,其重复 ...

  4. POJ 3693 Maximum repetition substring(连续重复子串)

    http://poj.org/problem?id=3693 题意:给定一个字符串,求重复次数最多的连续重复子串. 思路: 这道题确实是搞了很久,首先枚举连续子串的长度L,那么子串肯定包含了r[k], ...

  5. POJ 3693 Maximum repetition substring(后缀数组)

    Description The repetition number of a string is defined as the maximum number R such that the strin ...

  6. POJ 3693 Maximum repetition substring(后缀数组+ST表)

    [题目链接] poj.org/problem?id=3693 [题目大意] 求一个串重复次数最多的连续重复子串并输出,要求字典序最小. [题解] 考虑错位匹配,设重复部分长度为l,记s[i]和s[i+ ...

  7. 后缀数组 POJ 3693 Maximum repetition substring

    题目链接 题意:给定一个字符串,求重复次数最多的连续重复子串. 分析:(论文上的分析)先穷举长度 L,然后求长度为 L 的子串最多能连续出现几次.首先连续出现 1 次是肯定可以的,所以这里只考虑至少 ...

  8. poj 3693 Maximum repetition substring (后缀数组)

    其实是论文题.. 题意:求一个字符串中,能由单位串repeat得到的子串中,单位串重复次数最多的子串.若有多个重复次数相同的,输出字典序最小的那个. 解题思路:其实跟论文差不多,我看了很久没看懂,后来 ...

  9. POJ 3693 Maximum repetition substring ——后缀数组

    重复次数最多的字串,我们可以枚举循环节的长度. 然后正反两次LCP,然后发现如果长度%L有剩余的情况时,答案是在一个区间内的. 所以需要找到区间内最小的rk值. 两个后缀数组,四个ST表,$\Thet ...

随机推荐

  1. POCO TCPServer 解析

    POCO C++ Libraries提供一套 C++ 的类库用以开发基于网络的可移植的应用程序,功能涉及线程.文件.流,网络协议包括:HTTP.FTP.SMTP 等,还提供 XML 的解析和 SQL ...

  2. hibernate中配置单向多对一关联,和双向一对多,双向多对多

    什么是一对多,多对一? 一对多,比如你去找一个父亲的所有孩子,孩子可能有两个,三个甚至四个孩子. 这就是一对多 父亲是1 孩子是多 多对一,比如你到了两个孩子,它们都是有一个共同的父亲. 此时孩子就是 ...

  3. 百度app红包? 百度全家桶?果断卸载

    听说今年的春晚红包与百度合作.这不 刚又下载了一个百度app,之前下载过,太卡了,用户体验极.本身对百度也没啥好感,再加上这周看了:百度已死的文章,搜索全百家号.具体啥情况,你们百度搜一搜吧

  4. vi/vim连续注释

    知识点: 1-可视块模式方法 2-替换方法 3-自定义快捷键方式 今天刚好重新在linux上手工搭建完Lamp环境,用来下vi操作,一段时间不用就有些生疏了,正好经常要注释,回顾下自己会的方法,小结一 ...

  5. TP3.2.3 接入阿里sms 短信接口

    阿里云短信接口 配置文件 config.php //阿里大鱼 'Ali_SMS' =>array( 'sms_temp' =>'短信模板', 'sms_sign' =>'签名', ' ...

  6. 第1章 MATLAB概述

    MATLAB系统由~开发环境.~语言.~数学函数库.~图形处理系统.~应用程序接口(API)5大部分组成. 界面 命令行中的语句格式 命令行的语句格式:>>变量=表达式(没有>> ...

  7. C++远征之封装篇(下)-学习笔记

    C++远征之封装篇(下) c++封装概述 下半篇依然围绕类 & 对象进行展开 将原本学过的简单元素融合成复杂的新知识点. 对象 + 数据成员 = 对象成员(对象作为数据成员) 对象 + 数组 ...

  8. 003---Python基本数据类型--列表

    列表 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px ...

  9. Python | 用Pyinstaller打包发布exe应用

    参考:https://jingyan.baidu.com/article/a378c960b47034b3282830bb.html https://ask.csdn.net/questions/72 ...

  10. HBase 是什么

    Apache HBase™ is the Hadoop database, a distributed, scalable, big data store. HBase 是 Hadoop databa ...