Description

  某人在山上种了N棵小树苗。冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L * L的正方形塑料薄膜将小树遮起来。我们不妨将山立一个平面直角坐标系,设第i棵小树的坐标为(Xi,Yi),3个L*L的正方形的边要求平行与坐标轴,一个点如果在正方形的边界上,也算作被覆盖。当然,我们希望塑料薄膜面积越小越好,即求L最小值。

Input

  第一行有一个正整数N,表示有多少棵树。接下来有N行,第i+1行有2个整数Xi,Yi,表示第i棵树的坐标,保证不会有2个树的坐标相同。

Output

  一行,输出最小的L值。

Sample Input

4
0 1
0 -1
1 0
-1 0

Sample Output

1

Solution

这种最小可行性问题一般首先二分。

然后注意到最多只能覆盖三次,对于一个点集,先求出最小的包含所有点的矩形,显然由于矩形有四条边,而我们只有三个正方形,这不足以让每条边上的点分别被一个正方形覆盖,换句话说就是必然有一个正方形处于矩形角落。

所以直接爆搜,每次把正方形填在矩形角落就好了。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} const int maxn = 2e5+10;
const int inf = 1e9; struct data {int x,y;}a[maxn];
int n,vis[maxn],id; void cover(int x,int y,int l,int k) {
for(int i=1;i<=n;i++)
if((!vis[i])&&a[i].x>=x&&a[i].x<=x+l&&a[i].y>=y&&a[i].y<=y+l) vis[i]=k;
} void uncover(int k) {for(int i=1;i<=n;i++) if(vis[i]==k) vis[i]=0;} int dfs(int cnt,int l) {
int x=inf,xx=-inf,y=inf,yy=-inf,v;
for(int i=1;i<=n;i++) if(!vis[i]) x=min(x,a[i].x),xx=max(xx,a[i].x),y=min(y,a[i].y),yy=max(yy,a[i].y);
if(x==inf) return 1;
if(max(xx-x,yy-y)<=l) return 1;
if(cnt==2) return 0;
cover(x,y,l,v=++id);if(dfs(cnt+1,l)) return 1;uncover(v);
cover(x,yy-l,l,v=++id);if(dfs(cnt+1,l)) return 1;uncover(v);
cover(xx-l,y,l,v=++id);if(dfs(cnt+1,l)) return 1;uncover(v);
cover(xx-l,yy-l,l,v=++id);if(dfs(cnt+1,l)) return 1;uncover(v);
return 0;
} int main() {
read(n);for(int i=1;i<=n;i++) read(a[i].x),read(a[i].y);
int l=0,r=inf,ans,mid;
while(l<=r) if(memset(vis,0,sizeof vis),dfs(0,mid=(l+r)>>1)) r=mid-1,ans=mid;else l=mid+1;
write(ans);
return 0;
}

[bzoj1052] [HAOI2007]覆盖问题的更多相关文章

  1. [BZOJ1052][HAOI2007]覆盖问题 二分+贪心

    1052: [HAOI2007]覆盖问题 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2053  Solved: 959 [Submit][Sta ...

  2. bzoj1052 [HAOI2007]覆盖问题 - 贪心

    Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小 ...

  3. bzoj1052: [HAOI2007]覆盖问题(二分+构造)

    貌似又写出了常数挺优(至少不劣)的代码>v< 930+人AC #49 写了个O(nlogn)貌似比一些人O(n)还快2333333 这题还是先二分答案,check比较麻烦 显然正方形一定以 ...

  4. 【BZOJ1052】 [HAOI2007]覆盖问题

    BZOJ1052 [HAOI2007]覆盖问题 前言 小清新思维题. 最近肯定需要一些思维题挽救我这种碰到题目只会模板的菜鸡. 这题腾空出世? Solution 考虑一下我们二分答案怎么做? 首先转换 ...

  5. 【bzoj1052】覆盖问题

    [bzoj1052]覆盖问题 分析 考虑二分\(L\)的值,然后判断3个\(L*L\)能否覆盖所有的点. 这时候出现了两种可能的思路. 思路1 首先,3是一个很小的常数. 我们想:假如能探究出1和2的 ...

  6. BZOJ 1052: [HAOI2007]覆盖问题

    BZOJ 1052: [HAOI2007]覆盖问题 题意:给定平面上横纵坐标在-1e9~1e9内的20000个整数点的坐标,用三个大小相同边平行于坐标轴的正方形覆盖(在边界上的也算),问正方形的边长最 ...

  7. 【BZOJ1052】覆盖问题(贪心)

    [BZOJ1052]覆盖问题(贪心) 题面 BZOJ 洛谷 题解 这题好神仙啊. 很明显可以看出来要二分一个边长. 那么如何\(check\)呢? 我们把所有点用一个最小矩形覆盖, 那么必定每个边界上 ...

  8. 【BZOJ 1052】 1052: [HAOI2007]覆盖问题 (乱搞)

    1052: [HAOI2007]覆盖问题 Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄 膜把这些小树遮盖起来,经过一番长久的 ...

  9. 洛谷 P2218 [HAOI2007]覆盖问题 解题报告

    P2218 [HAOI2007]覆盖问题 题目描述 某人在山上种了\(N\)棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他 ...

随机推荐

  1. 【ntp时间校准配置】

    Ntp(网络时间协议)是一种可以通过TCP/IP网络传播,其架构模式可分为C/S(客户端/服务器),PTP(对等),broatcast(广播), mutilbrocast(组播),无论在任何系统或设备 ...

  2. Python3爬虫(十二) 爬虫性能

    Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.简单的循环串行一个一个循环,耗时是最长的,是所有的时间综合 import requests url_list ...

  3. GIT LFS 使用笔记

    一.背景 由于git上传文件大小受限,所以我们需要使用GIT LFS对大小超过一定上限的大文件进行处理. 二.安装 linux上安装参见 https://askubuntu.com/questions ...

  4. TCD产品技术参考资料

    1.Willis环 https://en.wikipedia.org/wiki/Circle_of_Willis 2.TCD仿真软件 http://www.transcranial.com/index ...

  5. python基础之try异常处理、socket套接字基础part1

    异常处理 错误 程序里的错误一般分为两种: 1.语法错误,这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正 2.逻辑错误,人为造成的错误,如数据类型错误.调用方法错误等,这些解 ...

  6. 初步学习pg_control文件之三

    接前文,初步学习pg_control文件之二 继续学习: 研究 DBState,先研究 DB_IN_PRODUCTION ,看它如何出现: 它出现在启动Postmaster时运行的函数处: /* * ...

  7. C++语言入门知识点(详细版)【持续更新每周三更】,小舒舒戳这里!!!

    时间过得好快啊,LITTLESUN已经在这块新地图摸打滚爬了一个多月了.前一段时间出了点小意外一直没能更新博客,昨天被小舒舒催更了(惭愧惭愧)便准备着手来一篇回忆录回首一下这一个月走过的风风雨雨,也希 ...

  8. 配置ORACLE的PRO*C环境

    1.访问数据库的方法    在ORACLE数据库管理和系统中,有三种访问数据库的方法:    ⑴.用SQL*Plus, 它有SQL命令以交互的应用程序访问数据库:    ⑵.用第四代语言应用开发工具开 ...

  9. Python连接符的种类和使用区别

    python的连接符主要有 加号(+).逗号(,).空格(   ) .反斜线(\).join()的方式. 加号(+),demo如下: #注意,+只能连接字符串,如果一个是字符串一个是数字就会报错 pr ...

  10. Android AppWidget偶尔无响应原因及解决办法

    Android AppWidget偶尔会出现无响应问题,如按钮点击失效,数据不更新等等. 测试后发现,一般出现在手机用清理工具(或系统自己)清理后发生,或手机重启后发生. 目前经过测试,找到的办法是把 ...