C#高性能大容量SOCKET并发(五):粘包、分包、解包
原文:C#高性能大容量SOCKET并发(五):粘包、分包、解包
粘包
使用TCP长连接就会引入粘包的问题,粘包是指发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一包数据的尾。粘包可能由发送方造成,也可能由接收方造成。TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一包数据,造成多个数据包的粘连。如果接收进程不及时接收数据,已收到的数据就放在系统接收缓冲区,用户进程读取数据时就可能同时读到多个数据包。
粘包一般的解决办法是制定通讯协议,由协议来规定如何分包解包。
分包
在NETIOCPDemo例子程序中,我们分包的逻辑是先发一个长度,然后紧接着是数据包内容,这样就可以把每个包分开。
应用层数据包格式如下:
应用层数据包格式 数据包长度Len:Cardinal(4字节无符号整数) 数据包内容,长度为Len AsyncSocketInvokeElement分包处理主要代码,我们收到的数据都是在ProcessReceive方法中处理,处理的方法是把收到的数据存到缓冲区数组中,然后取前4个字节为长度,如果剩下的字节数大于等于长度,则取到一个完整包,进行后续逻辑处理,如果取到的不够一个包,则不处理,等待后续包接收,具体代码如下:
public virtual bool ProcessReceive(byte[] buffer, int offset, int count) //接收异步事件返回的数据,用于对数据进行缓存和分包
{
m_activeDT = DateTime.UtcNow;
DynamicBufferManager receiveBuffer = m_asyncSocketUserToken.ReceiveBuffer; receiveBuffer.WriteBuffer(buffer, offset, count);
if (receiveBuffer.DataCount > sizeof(int))
{
//按照长度分包
int packetLength = BitConverter.ToInt32(receiveBuffer.Buffer, 0); //获取包长度
if (NetByteOrder)
packetLength = System.Net.IPAddress.NetworkToHostOrder(packetLength); //把网络字节顺序转为本地字节顺序 if ((packetLength > 10 * 1024 * 1024) | (receiveBuffer.DataCount > 10 * 1024 * 1024)) //最大Buffer异常保护
return false; if ((receiveBuffer.DataCount - sizeof(int)) >= packetLength) //收到的数据达到包长度
{
bool result = ProcessPacket(receiveBuffer.Buffer, sizeof(int), packetLength);
if (result)
receiveBuffer.Clear(packetLength + sizeof(int)); //从缓存中清理
return result;
}
else
{
return true;
}
}
else
{
return true;
}
}
解包
由于我们应用层数据包既可以传命令也可以传数据,因而针对每个包我们进行解包,分出命令和数据分别处理,因而每个Socket服务对象都需要解包,我们解包的逻辑是放在ProcessPacket中,命令和数据的包格式为:
命令长度Len:Cardinal(4字节无符号整数) 命令 数据 public virtual bool ProcessPacket(byte[] buffer, int offset, int count) //处理分完包后的数据,把命令和数据分开,并对命令进行解析
{
if (count < sizeof(int))
return false;
int commandLen = BitConverter.ToInt32(buffer, offset); //取出命令长度
string tmpStr = Encoding.UTF8.GetString(buffer, offset + sizeof(int), commandLen);
if (!m_incomingDataParser.DecodeProtocolText(tmpStr)) //解析命令
return false; return ProcessCommand(buffer, offset + sizeof(int) + commandLen, count - sizeof(int) - commandLen); //处理命令
}每个包中包含多个协议关键字,每个协议关键字用回车换行分开,因此我们需要调用文本分开函数,然后针对每条命令解析出关键字和值,具体代码在IncomingDataParser.DecodeProtocolText如下:
public bool DecodeProtocolText(string protocolText)
{
m_header = "";
m_names.Clear();
m_values.Clear();
int speIndex = protocolText.IndexOf(ProtocolKey.ReturnWrap);
if (speIndex < 0)
{
return false;
}
else
{
string[] tmpNameValues = protocolText.Split(new string[] { ProtocolKey.ReturnWrap }, StringSplitOptions.RemoveEmptyEntries);
if (tmpNameValues.Length < 2) //每次命令至少包括两行
return false;
for (int i = 0; i < tmpNameValues.Length; i++)
{
string[] tmpStr = tmpNameValues[i].Split(new string[] { ProtocolKey.EqualSign }, StringSplitOptions.None);
if (tmpStr.Length > 1) //存在等号
{
if (tmpStr.Length > 2) //超过两个等号,返回失败
return false;
if (tmpStr[0].Equals(ProtocolKey.Command, StringComparison.CurrentCultureIgnoreCase))
{
m_command = tmpStr[1];
}
else
{
m_names.Add(tmpStr[0].ToLower());
m_values.Add(tmpStr[1]);
}
}
}
return true;
}
}
处理命令
解析出命令后,需要对每个命令进行处理,各个协议实现类从AsyncSocketInvokeElement.ProcessCommand继承,然后编写各自协议处理逻辑,如吞吐量的测试协议逻辑实现代码如下:
namespace SocketAsyncSvr
{
class ThroughputSocketProtocol : BaseSocketProtocol
{
public ThroughputSocketProtocol(AsyncSocketServer asyncSocketServer, AsyncSocketUserToken asyncSocketUserToken)
: base(asyncSocketServer, asyncSocketUserToken)
{
m_socketFlag = "Throughput";
} public override void Close()
{
base.Close();
} public override bool ProcessCommand(byte[] buffer, int offset, int count) //处理分完包的数据,子类从这个方法继承
{
ThroughputSocketCommand command = StrToCommand(m_incomingDataParser.Command);
m_outgoingDataAssembler.Clear();
m_outgoingDataAssembler.AddResponse();
m_outgoingDataAssembler.AddCommand(m_incomingDataParser.Command);
if (command == ThroughputSocketCommand.CyclePacket)
return DoCyclePacket(buffer, offset, count);
else
{
Program.Logger.Error("Unknow command: " + m_incomingDataParser.Command);
return false;
}
} public ThroughputSocketCommand StrToCommand(string command)
{
if (command.Equals(ProtocolKey.CyclePacket, StringComparison.CurrentCultureIgnoreCase))
return ThroughputSocketCommand.CyclePacket;
else
return ThroughputSocketCommand.None;
} public bool DoCyclePacket(byte[] buffer, int offset, int count)
{
int cycleCount = 0;
if (m_incomingDataParser.GetValue(ProtocolKey.Count, ref cycleCount))
{
m_outgoingDataAssembler.AddSuccess();
cycleCount = cycleCount + 1;
m_outgoingDataAssembler.AddValue(ProtocolKey.Count, cycleCount);
}
else
m_outgoingDataAssembler.AddFailure(ProtocolCode.ParameterError, "");
return DoSendResult(buffer, offset, count);
}
}
}DEMO下载地址:http://download.csdn.net/detail/sqldebug_fan/7467745
免责声明:此代码只是为了演示C#完成端口编程,仅用于学习和研究,切勿用于商业用途。水平有限,C#也属于初学,错误在所难免,欢迎指正和指导。邮箱地址:fansheng_hx@163.com。
C#高性能大容量SOCKET并发(五):粘包、分包、解包的更多相关文章
- C#高性能大容量SOCKET并发(六):超时Socket断开(守护线程)和心跳包
原文:C#高性能大容量SOCKET并发(六):超时Socket断开(守护线程)和心跳包 守护线程 在服务端版Socket编程需要处理长时间没有发送数据的Socket,需要在超时多长时间后断开连接,我们 ...
- C#高性能大容量SOCKET并发(转)
C#高性能大容量SOCKET并发(零):代码结构说明 C#高性能大容量SOCKET并发(一):IOCP完成端口例子介绍 C#高性能大容量SOCKET并发(二):SocketAsyncEventArgs ...
- C#高性能大容量SOCKET并发(十一):编写上传客户端
原文:C#高性能大容量SOCKET并发(十一):编写上传客户端 客户端封装整体框架 客户端编程基于阻塞同步模式,只有数据正常发送或接收才返回,如果发生错误则抛出异常,基于TcpClient进行封装,主 ...
- C#高性能大容量SOCKET并发(零):代码结构说明
原文:C#高性能大容量SOCKET并发(零):代码结构说明 C#版完成端口具有以下特点: 连接在线管理(提供在线连接维护,连接会话管理,数据接收,连接断开等相关事件跟踪): 发送数据智能合并(组件会根 ...
- C#高性能大容量SOCKET并发(九):断点续传
原文:C#高性能大容量SOCKET并发(九):断点续传 上传断点续传 断点续传主要是用在上传或下载文件,一般做法是开始上传的时候,服务器返回上次已经上传的大小,如果上传完成,则返回-1:下载开始的时候 ...
- C#高性能大容量SOCKET并发(七):协议字符集
原文:C#高性能大容量SOCKET并发(七):协议字符集 UTF-8 UTF-8是UNICODE的一种变长字符编码又称万国码,由Ken Thompson于1992年创建.现在已经标准化为RFC 362 ...
- C#高性能大容量SOCKET并发(三):接收、发送
原文:C#高性能大容量SOCKET并发(三):接收.发送 异步数据接收有可能收到的数据不是一个完整包,或者接收到的数据超过一个包的大小,因此我们需要把接收的数据进行缓存.异步发送我们也需要把每个发送的 ...
- C#高性能大容量SOCKET并发(四):缓存设计
原文:C#高性能大容量SOCKET并发(四):缓存设计 在编写服务端大并发的应用程序,需要非常注意缓存设计,缓存的设计是一个折衷的结果,需要通过并发测试反复验证.有很多服务程序是在启动时申请足够的内存 ...
- C#高性能大容量SOCKET并发(二):SocketAsyncEventArgs封装
原文:C#高性能大容量SOCKET并发(二):SocketAsyncEventArgs封装 1.SocketAsyncEventArgs介绍 SocketAsyncEventArgs是微软提供的高性能 ...
随机推荐
- boost_1_34_1在c++builder6编译(把所有dll文件复制到windows系统目录,所以lib文件复制到bcb6\lib目录)
boost_1_34_1.zip boost 正则表达式 bcb6编译boost_1_34 有个项目要对大量的文本信息进行分析,以前的方法是自己写函数然后进行分析.现在发现一个正则表达式的处理方法,其 ...
- AJAX跨域与JSONP的一点实践经验
前几个周,项目中遇到了AJAX跨域的问题,然后找资料解决了. 首先要说明一点,关于AJAX的跨域原理和实践,我的经验还是比较少的,我只是大致看了下网上的资料,结合自己的理解,找到了解决办法,暂时不去仔 ...
- 文件控制 fcntl函数具体解释
摘要:本文主要讨论文件控制fcntl函数的基本应用.dup函数能够拷贝文件描写叙述符,而fcntl函数与dup函数有着异曲同工之妙.而且还有更加强大的功能,能够获取或设置已打开文件的性质,操作文件锁. ...
- 在深入分析:Fragment与Activity一些互动的方式(一,使用Handler)
在这里,我不再具体介绍了编写更传统的方式,比如静态变量,静态方法.持久性,application全局变量.发送和接收广播等等.. 首先让我们介绍使用Handler实现Fragment与Activity ...
- POJ 2418-Hardwood Species(map)
Hardwood Species Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 18770 Accepted: 740 ...
- 【44.19%】【codeforces 608D】Zuma
time limit per test2 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...
- 经典卷积神经网络的学习(二)—— VGGNet
1. 简介 VGGNet 是牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发的深度卷积神经网络,其主要探索了卷积神经网络的深度 ...
- Codeforces 106D Treasure Island 预处理前缀+暴力(水
主题链接:点击打开链接 意甲冠军: 特定n*m矩阵 # 是墙 . 和字母是平地 最多有26个字母(不反复出现) 以下k个指令. 每一个指令代表移动的方向和步数. 若以某个字母为起点,依次运行全部的指令 ...
- CSS 中的高度百分比
CSS 中可以使用%来给定指定元素的大小,也就是高度.宽度.margin,padding 等等,但是相信很多人都对百分比表示法的具体含义并不清楚,那么不懂就练,毕竟是检验真理的唯一标准(考研党举个手我 ...
- webpack打包不引入vue、echarts等公共库
如果我们打包的时候不想将vue.echarts等公共库包含在内,需要配置两处地方, 以下以基于vue-cli生成的项目为基准: 1webpack配置: // webpack.base.conf.js ...