思路:

肯定从小往大填合适了

f[i][j]表示第i个数是j的最少逆序对数

f[i][j]=min(f[i-1][k]+cost,f[i][j])

优化一下成O(nk)就好啦~ (不优化也可以过的…)

//By SiriusRen
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=10005;
int n,k,a[N],f[N][105],g[N][105],vis[105],temp[105];
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
if(~a[i])for(int j=a[i];j;j--)vis[j]++;
else for(int j=1;j<=k;j++)g[i][j]=vis[j+1];
}
memset(vis,0,sizeof(vis));
for(int i=n;i;i--){
if(~a[i]){
for(int j=a[i];j<=k;j++)vis[j]++;
for(int j=1;j<=k;j++)g[i][j]+=vis[a[i]-1];
}
else for(int j=1;j<=k;j++)g[i][j]+=vis[j-1];
}
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
vis[0]=0x3f3f3f3f;
for(int j=1;j<=k;j++){
f[i][j]=g[i][j]+temp[j];
vis[j]=min(vis[j-1],f[i][j]);
}
for(int j=1;j<=k;j++)temp[j]=vis[j];
}
for(int i=2;i<=k;i++)f[n][1]=min(f[n][1],f[n][i]);
printf("%d\n",f[n][1]);
}

BZOJ 1786 DP的更多相关文章

  1. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  2. BZOJ 1786 配对(DP)

    如果我们直接令dp[i][j]为前i个位置第i个位置填j所产生的逆序对的最少数.这样是不满足无后效性的. 但是如果发现对于两个-1,如果前面的-1填的数要大于后面的-1填的数.容易证明把他们两交换结果 ...

  3. BZOJ - 1003 DP+最短路

    这道题被马老板毒瘤了一下,TLE到怀疑人生 //然而BZOJ上妥妥地过了(5500ms+ -> 400ms+) 要么SPFA太玄学要么是初始化block被卡到O(n^4) 不管了,不改了 另外D ...

  4. BZOJ 2431 & DP

    题意:求逆序对数量为k的长度为n的排列的个数 SOL: 显然我们可以对最后一位数字进行讨论,判断其已经产生多少逆序对数量,然后对于前n-1位同样考虑---->每一个长度的排列我们都可以看做是相同 ...

  5. bzoj 1791 DP

    首先对于一棵树我们可以tree_dp来解决这个问题,那么对于环上每个点为根的树我们可以求出这个树的一端为根的最长链,并且在tree_dp的过程中更新答案.那么我们对于环,从某个点断开,破环为链,然后再 ...

  6. bzoj 1592 dp

    就是dp啊 f[i][j]表示到第i位,最后一位高度是j的最小花费 转移::f[i][j]=minn(f[i-1][k])+abs(a[i]-num[j]);(k<=j) #include< ...

  7. BZOJ 1207 DP

    打一次鼹鼠必然是从曾经的某一次打鼹鼠转移过来的 以打每一个鼹鼠时的最优解为DP方程 #include<iostream> #include<cstdio> #include&l ...

  8. bzoj 1925 dp

    思路:dp[ i ][ 0 ]表示第一个是山谷的方案,dp[ i ][ 1 ]表示第一个是山峰的方案, 我们算dp[ x ][ state ]的时候枚举 x 的位置 x 肯定是山峰, 然后就用组合数算 ...

  9. bzoj 1820 dp

    最普通dp要4维,因为肯定有一个在上一个的位置,所以可以变为3维,然后滚动数组优化一下. #include<bits/stdc++.h> #define LL long long #def ...

随机推荐

  1. Codeforces Round #445

    ACM ICPC 每个队伍必须是3个人 #include<stdio.h> #include<string.h> #include<stdlib.h> #inclu ...

  2. Java集合(一)HashMap

    HashMap 特点: HashMap的key和value都允许为空,无序的,且非线程安全的 数据结构: HashMap底层是一个数组,数组的每一项又都是链表,即数据和链表的结合体.当新建一个Hash ...

  3. javascript中in运算符的介绍

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. ibatis设置启用及关闭命名空间

    使ibatis用命名空间能够有效避免sql配置命名冲突,默认为启用状态,可以通过settings标签设置为关闭状态,例如: <settings> <setting name=&quo ...

  5. BluetoothA2dp蓝牙音箱的连接

    1:权限 <uses-feature android:name="android.hardware.bluetooth_le" android:required=" ...

  6. 错误:the apk for your currently selected variant(app-release-unsigned.apk)is not signed.Please specity a signing configuration for this variant(release)

    1:导入android studio project 时总会出现运行处一个红色叉号,这里可以点击选择叉号上面显示的Edit Configurations 查看右下角的错误警告信息.: 2:记录错误: ...

  7. epoll的实现与深入思考

    提契 纸上得来终觉浅,绝知此事要躬行. 正文 前段时间写了一篇epoll的学习文章,但没有自己的心得总觉得比较肤浅,花了一些时间补充一个epoll的实例,并浅析一下过程中遇到的问题. 上epoll_s ...

  8. 科学存储数据格式-HDF5

    HDF数据格式 Hierarchical Data Format,可以存储不同类型的图像和数码数据的文件格式,并且可以在不同类型的机器上传输,同时还有统一处理这种文件格式的函数库.大多数普通计算机都支 ...

  9. C#获取硬盘序列号

    //创建ManagementObjectSearcher对象 ManagementObjectSearcher searcher = new ManagementObjectSearcher(&quo ...

  10. DNS解析过程详解(转载)

    DNS解析过程详解(转载) DNS Domain Name System 域名系统,它就是根据域名查出IP地址.    先说一下DNS的几个基本概念: 一. 根域 就是所谓的“.”,其实我们的网址ww ...