【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)
【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 11661 | Accepted: 3824 |
Description
of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a
small group of the knights isthere, while the rest are busy doing heroic deeds around the country.
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying
the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of
votes, and the argument goes on.)
Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that
there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons).
If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights
of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.
Input
knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).
The input is terminated by a block with n = m = 0 .
Output
Sample Input
5 5
1 4
1 5
2 5
3 4
4 5
0 0
Sample Output
2
Hint
Source
题目大意:有n个骑士,m个仇视关系,每一个关系a b表示a与b老死不相往来,。
如今亚瑟王想要定期举办圆桌会议。圆桌会议要求到的骑士围成一圈。也就是每一个骑士一定会有左右两个相邻的骑士。要求相邻的骑士间不可有直接的仇视关系。
举行圆桌会议的骑士数目必须大于1。而且必须为奇数。
问须要剔除多少骑士才干正常举办会议。
有一个意思我没读出来,就是并不须要留下的骑士能參与同一场会议,会议能够举行多场,仅仅要留下的骑士能參与当中一场就可以。
这样建立补图,也就是骑士友好关系的图后。处于不同的双连通子图中的点一定无法出席同一场圆桌会议。由于这些点间要么是仇恨关系,要么仅仅有一条友好关系,无法成环。
这样范围就缩小到同一双连通分量中。
这里用到了一个结论,对于一个双连通分量,假设存在奇环,那么这个双连通分量中的每个点都一定会存在于至少一个奇环中。
由于不论什么一个点都有两条以上到这个奇环的路径,两条路径在连接奇环上的两个点,能够把奇环变为偶链和奇链 这样依据该点到这两个点间点个数的奇偶性进行选择 就保证一定能够构成奇环。
相同,假设不存在奇环,则全部双连通分量中的点都不存在于不论什么一个奇环中。
代码例如以下:
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <list>
#include <algorithm>
#include <map>
#include <set>
#define LL long long
#define Pr pair<int,int>
#define fread() freopen("in.in","r",stdin)
#define fwrite() freopen("out.out","w",stdout) using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 10000;
const int mod = 1e9+7;
const double eps = 1e-8; bool can[2333];
bool in[2333];
bool mp[2333][2333];
bool vis[2333];
int col[2333];
int dfn[2333],low[2333];
stack <int> s;
int n,tim; bool cal(int u)
{
// printf("%d\n",u);
queue <int> q;
q.push(u);
memset(col,-1,sizeof(col));
col[u] = 1; while(!q.empty())
{
u = q.front();
q.pop();
for(int i = 1; i <= n; ++i)
{
if(u != i && in[i] && !mp[u][i])
{
// printf("%d->%d %d %d\n",u,i,col[u],col[i]);
if(col[i] == -1)
{
col[i] = col[u]^1;
q.push(i);
}else if(col[i] == col[u]) return true;
}
}
}
return false;
} void tarjan(int u,int pre)
{
s.push(u);
dfn[u] = low[u] = tim++;
vis[u] = 1;
for(int i = 1; i <= n; ++i)
{
if(i == u || i == pre || mp[u][i]) continue;
if(!vis[i])
{
tarjan(i,u);
low[u] = min(low[u],low[i]);
if(low[i] >= dfn[u])
{
memset(in,0,sizeof(in));
while(s.top() != i)
{
in[s.top()] = 1;
s.pop();
}
in[i] = 1;
s.pop();
in[u] = 1;
if(cal(u))
{
for(int i = 1; i <= n; ++i)
if(in[i]) can[i] = 1;
}
}
}else low[u] = min(low[u],dfn[i]);
}
} int main()
{
//fread();
//fwrite(); int m,u,v;
while(~scanf("%d%d",&n,&m) && (n+m))
{
memset(mp,0,sizeof(mp));
while(m--)
{
scanf("%d%d",&u,&v);
mp[u][v] = mp[v][u] = 1;
} memset(vis,0,sizeof(vis));
memset(can,0,sizeof(can));
tim = 0;
for(int i = 1; i <= n; ++i)
if(!vis[i]) tarjan(i,i); int ans = 0;
for(int i = 1; i <= n; ++i)
ans += can[i]; printf("%d\n",n-ans);
} return 0;
}
【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)的更多相关文章
- Spoj 2878 KNIGHTS - Knights of the Round Table | 双联通分量 二分图判定
题目链接 考虑建立原图的补图,即如果两个骑士不互相憎恨,就在他们之间连一条无向边. 显而易见的是,如果若干个骑士在同一个点数为奇数的环上时,他们就可以在一起开会.换句话说,如果一个骑士被一个奇环包含, ...
- POJ 2942 Knights of the Round Table 黑白着色+点双连通分量
题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...
- poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 9169 Accep ...
- POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug
题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...
- poj 2942 Knights of the Round Table - Tarjan
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...
- POJ 2942 Knights of the Round Table
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 10911 Acce ...
- POJ 2942 Knights of the Round Table - from lanshui_Yang
Description Being a knight is a very attractive career: searching for the Holy Grail, saving damsels ...
- poj 2942 Knights of the Round Table(点双连通分量+二分图判定)
题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...
- POJ 2942.Knights of the Round Table (双连通)
简要题解: 意在判断哪些点在一个图的 奇环的双连通分量内. tarjan求出所有的点双连通分量,再用二分图染色判断每个双连通分量是否形成了奇环,记录哪些点出现在内奇环内 输出没有在奇环内的点的数目 ...
随机推荐
- 从Oracle同步数据到SQLServer——大小写敏感设置
Oracle默认是大小写敏感,而SQLServer默认大小写不敏感, 尤其是涉及主键字段时,注意请提前设置SQLServer对应的数据库表为大小写敏感,不然会报主键冲突的错误. 设置表内大小写敏感 A ...
- 常用GC算法
在C/C++中是由程序员自己去申请.管理和释放内存的,因此没有GC的概念.而在Java中,专门有一个用于垃圾回收的后台线程来进行监控.扫描,自动将一些无用的内存进行释放.下面介绍几种常见的GC算法. ...
- MongoDB: The Definitive Guide
第一章 简介 MongoDB是面向文档的数据库,不是关系型数据库.内置对MapReduce的支持,以及对地理空间索引的支持. 丰富的数据模型 容易扩展,它所采用的面向文档的数据模型可以使其在多台服务器 ...
- Android网络编程随想录(2)
上篇文章介绍了传输层TCP协议的理论知识,本文主要介绍了TCP协议基础之上HTTP协议和HTTPS协议的理论知识. HTTP协议基于TCP协议定义了客户端向服务器请求数据的方式,它是面向事务的应用层协 ...
- Codeforces Round #453
Visiting a Friend Solution Coloring a Tree 自顶向下 Solution Hashing Trees 连续2层节点数都超过1时能异构 Solution GCD ...
- call by value 和 call by reference 的区别
引用自https://zhidao.baidu.com/question/340173099.html Call by Value就是传值的方式,函数调用时是把实参的值传给形参,函数调用结束后形参的值 ...
- JQuery学习笔记系列(一)----选择器详解
笔者好长时间没有更新过博客园的笔记了,一部分原因是去年刚刚开始工作一段时间忙碌的加班,体会了一种每天加班到凌晨的充实感,之后闲暇时间了也因为自己懒惰没有坚持记笔记的习惯,现在重新拾起来. 借用古人的一 ...
- 用来生成get set string 方法
https://projectlombok.org/ 主要是用来生成get set string 方法等等 原理是注解
- DIV+CSS左右两列自适应高度的方法
我们在用DIV+CSS布局网页的时候,必然会遇到左右两列自适应高度的问题,就是左边列的背景会随着右边列内容的增加也相应的增加高度,下面就教大家DIV+CSS左右两列自适应高度的方法. 下面给出最终的效 ...
- 【技术累积】【点】【java】【6】时间戳
闲聊 加班多诶,写博客诶. 基本 时间戳,直观理解就是时间上面盖个戳罢了,在时间这个轴上面记录个点: unix时间戳表示从开始的时间点开始,经过了多少秒: 可以简单的看做是一个计时器: 基本定义可以直 ...